Differences in lumbar spine intradiscal pressure between standing and sitting postures: a comprehensive literature review

Author:

Roman-Liu Danuta1,Kamińska Joanna1,Tokarski Tomasz1

Affiliation:

1. Ergonomics, Central Institute for Labour Protection–National Research Institute (CIOP-PIB), Warsaw, Poland

Abstract

Background Musculoskeletal disorders (MSDs), especially in the lumbar spine, are a leading concern in occupational health. Work activities associated with excessive exposure are a source of risk for MSDs. The optimal design of workplaces requires changes in both sitting and standing postures. In order to secure such a design scientifically proved quantitative data are needed that would allow for the assessment of differences in spine load due to body posture and/or exerted force. Intradiscal pressure (IP) measurement in the lumbar spine is the most direct method of estimating spinal loads. Hence, this study aims at the quantitative evaluation of differences in lumbar spine load due to body posture and exerted forces, based on IP reported in publications obtained from a comprehensive review of the available literature. Methodology In order to collect data from studies measuring IP in the lumbar spine, three databases were searched. Studies with IP for living adults, measured in various sitting and standing postures, where one of these was standing upright, were included in the analysis. For data to be comparable between studies, the IP for each position was referenced to upright standing. Where different studies presented IP for the same postures, those relative IPs (rIP) were merged. Then, an analysis of the respective outcomes was conducted to find the possible relationship of IPs dependent on a specific posture. Results A preliminary analysis of the reviewed papers returned nine items fulfilling the inclusion and exclusion criteria. After merging relative IPs from different studies, rIP for 27 sitting and 26 standing postures was yielded. Some of the data were useful for deriving mathematical equations expressing rIP as a function of back flexion angle and exerted force in the form of a second degree polynomial equation for the standing and sitting positions. The equations showed that for the standing posture, the increase in IP with increasing back flexion angle is steeper when applying an external force than when maintaining body position only. In a sitting position with the back flexed at 20°, adding 10 kg to each hand increases the IP by about 50%. According to the equations developed, for back flexion angles less than 20°, the IP is greater in sitting than in standing. When the angle is greater than 20°, the IP in the sitting position is less than in the standing position at the same angle of back flexion. Conclusions Analysis of the data from the reviewed papers showed that: sitting without support increases IP by about 30% in relation to upright standing; a polynomial of the second degree defines changes in IP as a function of back flexion for for both postures. There are differences in the pattern of changes in IP with a back flexion angle between sitting and standing postures, as back flexion in standing increases IP more than in sitting.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3