Immortalization of American miniature horse-derived fibroblast by cell cycle regulator with normal karyotype

Author:

Tani TetsuyaORCID

Abstract

Immortalized cells serve as a crucial research tool that capitalizes on their robust proliferative properties for functional investigations of an organism. Establishing an immortalized American miniature horse cell line could yield valuable insights into these animals’ genetic and physiological characteristics and susceptibility to health issues. To date, immortalized small horse cells with normal karyotypes have not been established. In this study, we successfully established primary and immortalized fibroblast cell lines through the combined expression of human-derived mutant cyclin-dependent kinase 4 (CDK4R24C), cyclin D1, and Telomerase Reverse Transcriptase (TERT), although CDK4R24C and cyclin D1, SV40T and TERT did not result in successful immortalization. Our comparison of the properties of these immortalized cells demonstrated that K4DT immortalized cells maintain a normal karyotype. Ultimately, our findings could pave the way for the development of targeted interventions to enhance the health and well-being of American miniature horses.

Funder

Basic budget of Kindai University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3