Neural drive and motor unit characteristics after anterior cruciate ligament reconstruction: implications for quadriceps weakness

Author:

Sherman David A.123ORCID,Rush Justin4,Stock Matt S.5ORCID,D. Ingersoll Christopher6,E. Norte Grant5

Affiliation:

1. Live4 Physical Therapy and Wellness, Acton, Massachusetts, United States of America

2. Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, United States of America

3. Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America

4. Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, Ohio, United States of America

5. Cognition, Neuroplasticity, & Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, United States of America

6. College of Health Professions and Sciences, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, Florida, United States of America

Abstract

Purpose The purpose of this investigation was to compare the quality of neural drive and recruited quadriceps motor units’ (MU) action potential amplitude (MUAPAMP) and discharge rate (mean firing rate (MFR)) relative to recruitment threshold (RT) between individuals with anterior cruciate ligament reconstruction (ACLR) and controls. Methods Fourteen individuals with ACLR and 13 matched controls performed trapezoidal knee extensor contractions at 30%, 50%, 70%, and 100% of their maximal voluntary isometric contraction (MVIC). Decomposition electromyography (dEMG) and torque were recorded concurrently. The Hoffmann reflex (H-reflex) and central activation ratio (CAR) were acquired bilaterally to detail the proportion of MU pool available and volitionally activated. We examined MUAPAMP-RT and MFR-RT relationships with linear regression and extracted the regression line slope, y-intercept, and RT range for each contraction. Linear mixed effect modelling used to analyze the effect of group and limb on regression line slope and RT range. Results Individuals with ACLR demonstrated lower MVIC torque in the involved limb compared to uninvolved limb. There were no differences in H-reflex or CAR between groups or limbs. The ACLR involved limb demonstrated smaller mass-normalized RT range and slower MU firing rates at high contraction intensities (70% and 100% MVIC) compared to uninvolved and control limbs. The ACLR involved limb also demonstrated larger MU action potentials in the VM compared to the contralateral limb. These differences were largely attenuated with relative RT normalization. Conclusions These results suggest that persistent strength deficits following ACLR may be attributable to a diminished quadriceps motor neuron pool and inability to upregulate the firing rate of recruited MUs.

Funder

NATA Research & Education Foundation

University of Toledo deArce-Koch Memorial Endowment Fund

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3