Germination of pecan seeds changes the microbial community

Author:

Liu Jia1,Qiu Sumei2,Yang Liping2,Yang Can2,Xue Tingting1,Yuan Yingdan2

Affiliation:

1. Department of Civil and Architecture and Engineering, Chuzhou University, Anhui, China

2. College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China

Abstract

Endophytes are core of the plant-associated microbiome, and seed endophytes are closely related to the plant growth and development. Seed germination is an important part of pecan’s life activities, but the composition and changes of microbes during different germination processes have not yet been revealed in pecan seeds. In order to deeply explore the characteristics of endophytes during the germination process of pecan, high-throughput sequencing was performed on seeds at four different germination stages. Findings of present study was found that the diversity and composition of microorganisms were different in different germination stages, and the microbial richness and diversity were highest in the seed endocarp break stage. It was speculated that the change of endophytes in pecan seeds was related to the germination stage. By evaluating the relationship between microbial communities, the core microbiota Cyanobacteria, Proteobacteria and Actinobacteria (bacterial) and Anthophyta and Ascomycota (fungal) core microbiota were identified in germinating pecan seeds. Finally, biomarkers in different germination processes of pecan seeds were identified by LEfSe analysis, among which Proteobacteria, Gamma proteobacteria and, Cyanobacteria and Ascomycota and Sordariomycetes were most abundant. Thus, this study will help to explore the interaction mechanism between pecan seeds and endophytes in different germination processes, and provide materials for the research and development of pecan seed endophytes.

Funder

National Natural Science Foundation

Anhui Provincial Educational Foundation

Chuzhou University Start-up Foundation

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3