Co-inoculation of mycorrhizal fungi and plant growth-promoting rhizobacteria improve growth, biochemical and physiological attributes in Dracocephalum kotschyi Boiss. under water deficit stress

Author:

Gasemi Saeid1,Mahdavikia Hassan2,Rezaei-Chiyaneh Esmaeil3,Banaei-Asl Farzad4,Dolatabadian Aria5,Sadeghpour Amir6

Affiliation:

1. Department of Medicinal Plants, Urmia University, Miandoab, Urmia, Iran

2. Department of Medicinal Plants and Horticulture, Shahid Bakeri Higher Education Center of Miandoab, Urmia University, Urmia, Iran

3. Department of Plant Production and Genetics, Urmia University, Urmia, Iran

4. Biotechnology Research Department, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization, Tehran, Iran

5. School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia

6. School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, United States of America

Abstract

Background Because of swift climate change, drought is a primary environmental factor that substantially diminishes plant productivity. Furthermore, the increased use of chemical fertilizers has given rise to numerous environmental problems and health risks. Presently, there is a transition towards biofertilizers to enhance crops’ yield, encompassing medicinal and aromatic varieties. Methods This study aimed to explore the impacts of plant growth-promoting rhizobacteria (PGPR), both independently and in conjunction with arbuscular mycorrhizal fungi (AMF), on various morphological, physiological, and phytochemical characteristics of Dracocephalum kotschyi Boiss. This experimentation took place under different irrigation conditions. The irrigation schemes encompassed well watering (WW), mild water stress (MWS), and severe water stress (SWS). The study evaluated the effects of various biofertilizers, including AMF, PGPR, and the combined application of both AMF and PGPR (AMF + PGPR), compared to a control group where no biofertilizers were applied. Results The findings of the study revealed that under water-stress conditions, the dry yield and relative water content of D. kotschyi Boiss. experienced a decline. However, the application of AMF, PGPR, and AMF + PGPR led to an enhancement in dry yield and relative water content compared to the control group. Among the treatments, the co-application of AMF and PGPR in plants subjected to well watering (WW) exhibited the tallest growth (65 cm), the highest leaf count (187), and the most elevated chlorophyll a (0.59 mg g−1 fw) and b (0.24 mg g−1 fw) content. Regarding essential oil production, the maximum content (1.29%) and yield (0.13 g plant −1) were obtained from mild water stress (MWS) treatment. The co-application of AMF and PGPR resulted in the highest essential oil content and yield (1.31% and 0.15 g plant−1, respectively). The analysis of D. kotschyi Boiss. essential oil identified twenty-six compounds, with major constituents including geranyl acetate (11.4–18.88%), alpha-pinene (9.33–15.08%), Bis (2-Ethylhexyl) phthalate (8.43-12.8%), neral (6.80–9.32%), geranial (9.23–11.91%), and limonene (5.56–9.12%). Notably, the highest content of geranyl acetate, geranial, limonene, and alpha-pinene was observed in plants subjected to MWS treatment following AMF + PGPR application. Furthermore, the co-application of AMF, PGPR, and severe water stress (SWS) notably increased the total soluble sugar (TSS) and proline content. In conclusion, the results indicate that the combined application of AMF and PGPR can effectively enhance the quantity and quality of essential oil in D. kotschyi Boiss., particularly when the plants are exposed to water deficit stress conditions.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3