Using transplantation to restore seagrass meadows in a protected South African lagoon

Author:

Watson Katie M.1ORCID,Pillay Deena2,von der Heyden Sophie13ORCID

Affiliation:

1. Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa

2. Marine and Antarctic Centre for Innovation and Sustainability, Department of Biological Sciences, University of Cape Town, Cape Town, South Africa

3. School of Climate Studies, University of Stellenbosch, Stellenbosch, South Africa

Abstract

Background Seagrass meadows provide valuable ecosystem services but are threatened by global change pressures, and there is growing concern that the functions seagrasses perform within an ecosystem will be reduced or lost without intervention. Restoration has become an integral part of coastal management in response to major seagrass declines, but is often context dependent, requiring an assessment of methods to maximise restoration success. Here we investigate the use of different restoration strategies for the endangered Zostera capensis in South Africa. Methods We assessed restoration feasibility by establishing seagrass transplant plots based on different transplant source materials (diameter (ø) 10 cm cores and anchored individual shoots), planting patterns (line, dense, bullseye) and planting site (upper, upper-mid and mid-intertidal zones). Monitoring of area cover, shoot length, and macrofaunal diversity was conducted over 18 months. Results Mixed model analysis showed distinct effects of transplant material used, planting pattern and site on transplant survival and area cover. Significant declines in seagrass cover across all treatments was recorded post-transplantation (2 months), followed by a period of recovery. Of the transplants that persisted after 18 months of monitoring (~58% plots survived across all treatments), seagrass area cover increased (~112%) and in some cases expanded by over >400% cover, depending on type of transplant material, planting arrangement and site. Higher bioturbator pressure from sandprawns (Kraussillichirus kraussi) significantly reduced transplant survival and area cover. Transplant plots were colonised by invertebrates, including seagrass specialists, such as South Africa’s most endangered marine invertebrate, the false-eelgrass limpet (Siphonaria compressa). For future seagrass restoration projects, transplanting cores was deemed the best method, showing higher long-term persistence and cover, however this approach is also resource intensive with potentially negative impacts on donor meadows at larger scales. There is a clear need for further research to address Z. capensis restoration scalability and improve long-term transplant persistence.

Funder

National Research Foundation

Stellenbosch University’s Faculty of Science, Department of Botany and Zoology

IABO Hub Cooperative Publishing Fund

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3