Machine learning: a powerful tool for identifying key microbial agents associated with specific cancer types

Author:

Feng Jia1,Yang Kailan1,Liu Xuexue1,Song Min1,Zhan Ping2,Zhang Mi1,Chen Jinsong1,Liu Jinbo1

Affiliation:

1. Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China

2. Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China

Abstract

Machine learning (ML) includes a broad class of computer programs that improve with experience and shows unique strengths in performing tasks such as clustering, classification and regression. Over the past decade, microbial communities have been implicated in influencing the onset, progression, metastasis, and therapeutic response of multiple cancers. Host-microbe interaction may be a physiological pathway contributing to cancer development. With the accumulation of a large number of high-throughput data, ML has been successfully applied to the study of human cancer microbiomics in an attempt to reveal the complex mechanism behind cancer. In this review, we begin with a brief overview of the data sources included in cancer microbiomics studies. Then, the characteristics of the ML algorithm are briefly introduced. Secondly, the application progress of ML in cancer microbiomics is also reviewed. Finally, we highlight the challenges and future prospects facing ML in cancer microbiomics. On this basis, we conclude that the development of cancer microbiomics can not be achieved without ML, and that ML can be used to develop tumor-targeting microbial therapies, ultimately contributing to personalized and precision medicine.

Funder

Sichuan Science and Technology Program, China

Scientific Research Program of Southwest Medical University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3