Different patterns of foreground and background processing contribute to texture segregation in humans: an electrophysiological study

Author:

Zhang Baoqiang123,Hu Saisai123,Zhang Tingkang123,Hai Min123,Wang Yongchun123,Li Ya123,Wang Yonghui123

Affiliation:

1. School of Psychology, Shaanxi Normal University, Xi’an, China

2. Shaanxi Provincial Key Laboratory of Behavior & Cognitive Neuroscience, Xi’an, China

3. Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi’an, China

Abstract

Background Figure-ground segregation is a necessary process for accurate visual recognition. Previous neurophysiological and human brain imaging studies have suggested that foreground-background segregation relies on both enhanced foreground representation and suppressed background representation. However, in humans, it is not known when and how foreground and background processing play a role in texture segregation. Methods To answer this question, it is crucial to extract and dissociate the neural signals elicited by the foreground and background of a figure texture with high temporal resolution. Here, we combined an electroencephalogram (EEG) recording and a temporal response function (TRF) approach to specifically track the neural responses to the foreground and background of a figure texture from the overall EEG recordings in the luminance-tracking TRF. A uniform texture was included as a neutral condition. The texture segregation visual evoked potential (tsVEP) was calculated by subtracting the uniform TRF from the foreground and background TRFs, respectively, to index the specific segregation activity. Results We found that the foreground and background of a figure texture were processed differently during texture segregation. In the posterior region of the brain, we found a negative component for the foreground tsVEP in the early stage of foreground-background segregation, and two negative components for the background tsVEP in the early and late stages. In the anterior region, we found a positive component for the foreground tsVEP in the late stage, and two positive components for the background tsVEP in the early and late stages of texture processing. Discussion In this study we investigated the temporal profile of foreground and background processing during texture segregation in human participants at a high time resolution. The results demonstrated that the foreground and background jointly contribute to figure-ground segregation in both the early and late phases of texture processing. Our findings provide novel evidence for the neural correlates of foreground-background modulation during figure-ground segregation in humans.

Funder

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3