Navigating the complexities of the forest land sharing vs sparing logging dilemma: analytical insights through the governance theory of social-ecological systems dynamics

Author:

Pichancourt Jean-BaptisteORCID

Abstract

This study addresses the ongoing debate on forest land-sparing vs land-sharing, aiming to identify effective strategies for both species conservation and timber exploitation. Previous studies, guided by control theory, compared sharing and sparing by optimizing logging intensity along a presumed trade-off between timber yield and ecological outcomes. However, the realism of this trade-off assumption is questioned by ecological and governance theories. This article introduces a mathematical model of Social-Ecological System (SES) dynamics, distinguishing selective logging intensification between sharing and sparing, with associated governance requirements. The model assumes consistent rules for logging, replanting, conservation support, access regulation, socio-economic, soil and climate conditions. Actors, each specialized in sustainable logging and replanting of a single species, coexist with various tree species in the same space for land sharing, contrasting with separate actions on monospecific stands for sparing. In sharing scenarios, a gradient of intensification is created from 256 combinations of selective logging for a forest with eight coexisting tree species. This is compared with eight scenarios of monospecific stands adjacent to a spared eight-species forest area safeguarded from logging. Numerical projections over 100 years rank sparing and sharing options based on forest-level tree biodiversity, carbon storage, and timber yield. The findings underscore the context-specific nature of the problem but identify simple heuristics to optimize both sparing and sharing practices. Prioritizing the most productive tree species is effective when selecting sparing, especially when timber yield and biodiversity are benchmarks. Conversely, sharing consistently outperforms sparing when carbon storage and biodiversity are main criteria. Sharing excels across scenarios considering all three criteria, provided a greater diversity of actors access and coexist in the shared space under collective rules ensuring independence and sustainable logging and replanting. The present model addresses some limitations in existing sparing-sharing theory by aligning with established ecological theories exploring the intricate relationship between disturbance practices, productivity and ecological outcomes. The findings also support a governance hypothesis from the 2009 Nobel Prize in Economics (E. Ostrom) regarding the positive impact on biodiversity and productivity of increasing polycentricity, i.e., expanding the number of independent species controllers’ channels (loggers/replanters/supporters/regulators). This hypothesis, rooted in Ashby’s law of requisite variety from control theory, suggests that resolving the sharing/sparing dilemma may depend on our ability to predict the yield-ecology performances of sparing (in heterogeneous landscapes) vs of sharing (in the same space) from their respective levels of “polycentric requisite variety”.

Funder

Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3