Establishment and validation of a heart failure risk prediction model for elderly patients after coronary rotational atherectomy based on machine learning

Author:

Zhang Lixiang,Zhou Xiaojuan,Cao Jiaoyu

Abstract

Objective To develop and validate a heart failure risk prediction model for elderly patients after coronary rotational atherectomy based on machine learning methods. Methods A retrospective cohort study was conducted to select 303 elderly patients with severe coronary calcification as the study subjects. According to the occurrence of postoperative heart failure, the study subjects were divided into the heart failure group (n = 53) and the non-heart failure group (n = 250). Retrospective collection of clinical data from the study subjects during hospitalization. After processing the missing values in the original data and addressing sample imbalance using Adaptive Synthetic Sampling (ADASYN) method, the final dataset consists of 502 samples: 250 negative samples (i.e., patients not suffering from heart failure) and 252 positive samples (i.e., patients with heart failure). According to a 7:3 ratio, the datasets of 502 patients were randomly divided into a training set (n = 351) and a validation set (n = 151). On the training set, logistic regression (LR), extreme gradient boosting (XGBoost), support vector machine (SVM), and lightweight gradient boosting machine (LightGBM) algorithms were used to construct heart failure risk prediction models; Evaluate model performance on the validation set by calculating the area under the receiver operating characteristic curve (ROC) curve (AUC), sensitivity, specificity, positive predictive value, negative predictive value, F1-score, and prediction accuracy. Result A total of 17.49% of 303 patients occured postoperative heart failure. The AUC of LR, XGBoost, SVM, and LightGBM models in the training set were 0.872, 1.000, 0.699, and 1.000, respectively. After 10 fold cross validation, the AUC was 0.863, 0.972, 0.696, and 0.963 in the training set, respectively. Among them, XGBoost had the highest AUC and better predictive performance, while SVM models had the worst performance. The XGBoost model also showed good predictive performance in the validation set (AUC = 0.972, 95% CI [0.951–0.994]). The Shapley additive explanation (SHAP) method suggested that the six characteristic variables of blood cholesterol, serum creatinine, fasting blood glucose, age, triglyceride and NT-proBNP were important positive factors for the occurrence of heart failure, and LVEF was important negative factors for the occurrence of heart failure. Conclusion The seven characteristic variables of blood cholesterol, blood creatinine, fasting blood glucose, NT-proBNP, age, triglyceride and LVEF are all important factors affecting the occurrence of heart failure. The prediction model of heart failure risk for elderly patients after CRA based on the XGBoost algorithm is superior to SVM, LightGBM and the traditional LR model. This model could be used to assist clinical decision-making and improve the adverse outcomes of patients after CRA.

Funder

China University of Science and Technology

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference36 articles.

1. A study on the line graph prediction model for heart failure after PCI in acute myocardial infarction;Chenglong;Journal of Cardiovascular Rehabilitation Medicine,2022

2. Machine learning model for mortality prediction in patients with community acquired pneumonia: development and validation study;Cilloniz;Chest,2023

3. Machine learning based prediction of adverse events following an acute coronary syndrome (PRAISE): a modeling study of pooled datasets;D’Ascenzo;Lancet,2021

4. New progress in the study of coronary artery calcification;Guijun;Chinese Journal of Cardiology,2019

5. Abnormal cholesterol levels may increase the risk of heart failure;Guoying;Chinese Journal of Cardiac Pacing and Electrophysiology,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3