Transcriptomic and biochemical insights into fall armyworm (Spodoptera frugiperda) responses on silicon-treated maize

Author:

Ul Haq Inzamam1,Zhang Ke-Xin1,Gou Yuping1,Hajjar Dina2,Makki Arwa A.2,Alkherb Wafa A.H.3,Ali Habib4,Liu Changzhong1

Affiliation:

1. College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China

2. College of Science, Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia

3. Department of Biology, College of Science, Qassim University, Buraidah, Saudi Arabia

4. Department of Agricultural Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan

Abstract

Background The fall armyworm, Spodoptera frugiperda, is an agricultural pest of significant economic concern globally, known for its adaptability, pesticide resistance, and damage to key crops such as maize. Conventional chemical pesticides pose challenges, including the development of resistance and environmental pollution. The study aims to investigate an alternative solution: the application of soluble silicon (Si) sources to enhance plant resistance against the fall armyworm. Methods Silicon dioxide (SiO2) and potassium silicate (K2SiO3) were applied to maize plants via foliar spray. Transcriptomic and biochemical analyses were performed to study the gene expression changes in the fall armyworm feeding on Si-treated maize. Results Results indicated a significant impact on gene expression, with a large number of differentially expressed genes (DEGs) identified in both SiO2 and K2SiO3 treatments. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified critical DEGs involved in specific pathways, including amino acid, carbohydrate, lipid, energy, xenobiotics metabolisms, signal transduction, and posttranslational modification, significantly altered at both Si sources. Biochemical analyses further revealed that Si treatments inhibited several enzyme activities (glutamate dehydrogenase, trehalase, glucose-6-phosphate dehydrogenase, chitinase, juvenile hormone esterase, and cyclooxygenase while simultaneously inducing others (total protein, lipopolysaccharide, fatty acid synthase, ATPase, and cytochrome P450), thus suggesting a toxic effect on the fall armyworm. In conclusion, Si applications on maize influence the gene expression and biochemical activities of the fall armyworm, potentially offering a sustainable pest management strategy.

Funder

Science Project of Agriculture and Rural Department of Gansu Province

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3