Dark kinase annotation, mining, and visualization using the Protein Kinase Ontology

Author:

Soleymani Saber1,Gravel Nathan2,Huang Liang-Chin2,Yeung Wayland2,Bozorgi Elika1,Bendzunas Nathaniel G.3,Kochut Krzysztof J.1,Kannan Natarajan23

Affiliation:

1. Department of Computer Science, University of Georgia, Athens, GA, United States

2. Institute of Bioinformatics, University of Georgia, Athens, GA, United States

3. Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States

Abstract

The Protein Kinase Ontology (ProKinO) is an integrated knowledge graph that conceptualizes the complex relationships among protein kinase sequence, structure, function, and disease in a human and machine-readable format. In this study, we have significantly expanded ProKinO by incorporating additional data on expression patterns and drug interactions. Furthermore, we have developed a completely new browser from the ground up to render the knowledge graph visible and interactive on the web. We have enriched ProKinO with new classes and relationships that capture information on kinase ligand binding sites, expression patterns, and functional features. These additions extend ProKinO’s capabilities as a discovery tool, enabling it to uncover novel insights about understudied members of the protein kinase family. We next demonstrate the application of ProKinO. Specifically, through graph mining and aggregate SPARQL queries, we identify the p21-activated protein kinase 5 (PAK5) as one of the most frequently mutated dark kinases in human cancers with abnormal expression in multiple cancers, including a previously unappreciated role in acute myeloid leukemia. We have identified recurrent oncogenic mutations in the PAK5 activation loop predicted to alter substrate binding and phosphorylation. Additionally, we have identified common ligand/drug binding residues in PAK family kinases, underscoring ProKinO’s potential application in drug discovery. The updated ontology browser and the addition of a web component, ProtVista, which enables interactive mining of kinase sequence annotations in 3D structures and Alphafold models, provide a valuable resource for the signaling community. The updated ProKinO database is accessible at https://prokino.uga.edu.

Funder

National Institutes of Health

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3