Identification of novel biomarkers in obstructive sleep apnea via integrated bioinformatics analysis and experimental validation

Author:

Zhang Kai1,Wang Caizhen2,Wu Yunxiao1,Xu Zhifei1

Affiliation:

1. Beijing Children’s Hospital, Department of Respiratory Medicine, Beijing, People’s Republic of China

2. The Second Hospital of Hebei Medical University, Pediatric Intensive Care Unit, Shijiazhuang, Hebei, People’s Republic of China

Abstract

Background Obstructive sleep apnea (OSA) is a complex and multi-gene inherited disease caused by both genetic and environmental factors. However, due to the high cost of diagnosis and complex operation, its clinical application is limited. This study aims to explore potential target genes associated with OSA and establish a corresponding diagnostic model. Methods This study used microarray datasets from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) related to OSA and perform functional annotation and pathway analysis. The study employed multi-scale embedded gene co-expression network analysis (MEGENA) combined with least absolute shrinkage and selection operator (LASSO) regression analysis to select hub genes and construct a diagnostic model for OSA. In addition, the study conducted correlation analysis between hub genes and OSA-related genes, immunoinfiltration, gene set enrichment analysis (GSEA), miRNA network analysis, and identified potential transcription factors (TFs) and targeted drugs for hub genes. Finally, the study used chronic intermittent hypoxia (CIH) mouse model to simulate OSA hypoxic conditions and verify the expression of hub genes in CIH mice. Results In this study, a total of 401 upregulated genes and 275 downregulated genes were identified, and enrichment analysis revealed that these differentially expressed genes may be associated with pathways such as vasculature development, cellular response to cytokine stimulus, and negative regulation of cell population proliferation. Through MEGENA combined with LASSO regression, seven OSA hub genes were identified, including C12orf54, FOS, GPR1, OR9A4, MYO5B, RAB39B, and KLHL4. The diagnostic model constructed based on these genes showed strong stability. The expression levels of hub genes were significantly correlated with the expression levels of OSA-related genes and mainly acted on pathways such as the JAK/STAT signaling pathway and the cytosolic DNA-sensing pathway. Drug-target predictions for hub genes were made using the Connectivity Map (CMap) database and the Drug-Gene Interaction database (Dgidb), which identified targeted therapeutic drugs for the hub genes. In vivo experiments showed that the hub genes were all decreasing in the OSA mouse model. Conclusions This study identified novel biomarkers for OSA and established a reliable diagnostic model. The transcriptional changes identified may help to reveal the pathogenesis, mechanisms, and sequelae of OSA.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

Respiratory Research Project of National Clinical Research Center for Respiratory Diseases

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3