Affiliation:
1. Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
2. Department of Entomology, Kansas State University, Manhattan, KS, United States
Abstract
In theAllonemobius sociuscomplex of crickets, reproductive isolation is primarily accomplished via postmating prezygotic barriers. We tested seven protein-coding genes expressed in the male ejaculate for patterns of evolution consistent with a putative role as postmating prezygotic isolation genes.Our recently diverged species generally lacked sequence variation. As a result,ω-based tests were only mildly successful. Some of our genes showed evidence of elevatedωvalues on the internal branches of gene trees. In a couple genes these internal branches coincided with both species branching events of the species tree, betweenA. fasciatusand the other two species, and betweenA. sociusandA. sp. nov.Tex. In comparison, more successful approaches were those that took advantage of the varying degrees of lineage sorting and allele sharing among our young species. These approaches were particularly powerful within the contact zone. Among the genes we tested we found genes with genealogies that indicated relatively advanced degrees of lineage sorting across both allopatric and contact zone alleles. Within a contact zone between two members of the species complex, only a subset of genes maintained allelic segregation despite evidence of ongoing gene flow in other genes. The overlap in these analyses wasarginine kinase(AK) andapolipoprotein A-1 binding protein(APBP). These genes represent two of the first examples of sperm maturation, capacitation, and motility proteins with fixed non-synonymous substitutions between species-specific alleles that may lead to postmating prezygotic isolation. Both genes express ejaculate proteins transferred to females during copulation and were previously identified through comparative proteomics. We discuss the potential function of these genes in the context of the specific postmating prezygotic isolation phenotype among our species, namely conspecific sperm precedence and the superior ability of conspecific males to induce oviposition in females.
Funder
National Science Foundation
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献