Buried treasure in a public repository: Mining mitochondrial genes of 32 annelid species from sequence reads deposited in the Sequence Read Archive (SRA)

Author:

Kobayashi Genki1

Affiliation:

1. Research Center for Creative Partnerships, Ishinomaki Senshu University, Ishinomaki, Miyagi, Japan

Abstract

Background The mitochondrial genomes (mitogenomes) of metazoans generally include the same set of protein-coding genes, which ensures the homology of mitochondrial genes between species. The mitochondrial genes are often used as reference data for species identification based on genetic data (DNA barcoding). The need for such reference data has been increasing due to the application of environmental DNA (eDNA) analysis for environmental assessments. Recently, the number of publicly available sequence reads obtained with next-generation sequencing (NGS) has been increasing in the public database (the NCBI Sequence Read Archive, SRA). Such freely available NGS reads would be promising sources for assembling mitochondrial protein-coding genes (mPCGs) of organisms whose mitochondrial genes are not available in GenBank. The present study aimed to assemble annelid mPCGs from raw data deposited in the SRA. Methods The recent progress in the classification of Annelida was briefly introduced. In the present study, the mPCGs of 32 annelid species of 19 families in clitellates and allies in Sedentaria (echiurans and polychaetes) were newly assembled from the reads deposited in the SRA. Assembly was performed with a recently published pipeline mitoRNA, which includes cycles of Bowtie2 mapping and Trinity assembly. Assembled mPCGs were deposited in GenBank as Third Party Data (TPA) data. A phylogenetic tree was reconstructed with maximum likelihood (ML) analysis, together with other mPCGs deposited in GenBank. Results and Discussion mPCG assembly was largely successful except for Travisia forbesii; only four genes were detected from the assembled contigs of the species probably due to the reads targeting its parasite. Most genes were largely successfully obtained, whereas atp8, nad2, and nad4l were only successful in 22–24 species. The high nucleotide substitution rates of these genes might be relevant to the failure in the assembly although nad6, which showed a similarly high substitution rate, was successfully assembled. Although the phylogenetic positions of several lineages were not resolved in the present study, the phylogenetic relationships of some polychaetes and leeches that were not inferred by transcriptomes were well resolved probably due to a more dense taxon sampling than previous phylogenetic analyses based on transcriptomes. Although NGS data are generally better sources for resolving phylogenetic relationships of both higher and lower classifications, there are ensuring needs for specific loci of the mitochondrial genes for analyses that do not require high resolutions, such as DNA barcoding, eDNA, and phylogenetic analysis among lower taxa. Assembly from publicly available NGS reads would help design specific primers for the mitochondrial gene sequences of species, whose mitochondrial genes are hard to amplify by Sanger sequencing using universal primers.

Funder

JSPS KAKENHI

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3