In-silico study of antisense oligonucleotide antibiotics

Author:

Chen Erica S.,Ho Eric S.ORCID

Abstract

Background The rapid emergence of antibiotic-resistant bacteria directly contributes to a wave of untreatable infections. The lack of new drug development is an important driver of this crisis. Most antibiotics today are small molecules that block vital processes in bacteria. To optimize such effects, the three-dimensional structure of targeted bacterial proteins is imperative, although such a task is time-consuming and tedious, impeding the development of antibiotics. The development of RNA-based therapeutics has catalyzed a new platform of antibiotics—antisense oligonucleotides (ASOs). These molecules hybridize with their target mRNAs with high specificity, knocking down or interfering with protein translation. This study aims to develop a bioinformatics pipeline to identify potent ASO targets in essential bacterial genes. Methods Three bacterial species (P. gingivalis, H. influenzae, and S. aureus) were used to demonstrate the utility of the pipeline. Open reading frames of bacterial essential genes were downloaded from the Database of Essential Genes (DEG). After filtering for specificity and accessibility, ASO candidates were ranked based on their self-hybridization score, predicted melting temperature, and the position on the gene in an operon. Enrichment analysis was conducted on genes associated with putative potent ASOs. Results A total of 45,628 ASOs were generated from 348 unique essential genes in P. gingivalis. A total of 1,117 of them were considered putative. A total of 27,273 ASOs were generated from 191 unique essential genes in H. influenzae. A total of 847 of them were considered putative. A total of 175,606 ASOs were generated from 346 essential genes in S. aureus. A total of 7,061 of them were considered putative. Critical biological processes associated with these genes include translation, regulation of cell shape, cell division, and peptidoglycan biosynthetic process. Putative ASO targets generated for each bacterial species are publicly available here: https://github.com/EricSHo/AOA. The results demonstrate that our bioinformatics pipeline is useful in identifying unique and accessible ASO targets in bacterial species that post major public health issues.

Funder

Lafayette College

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference53 articles.

1. Accurate prediction of protein structures and interactions using a three-track neural network;Baek;Science (New York, N.Y.),2021

2. Molecular mechanisms of antibiotic resistance;Blair;Nature Reviews Microbiology,2015

3. An assessment of the antisense properties of RNase H-competent and steric-blocking oligomers;Bonham;Nucleic Acids Research,1995

4. Terpenoid biosynthesis in prokaryotes;Boronat;Advances in Biochemical Engineering/Biotechnology,2015

5. Value-engineered translation: developing biotherapeutics that align with health-system needs;Bubela;The American Journal of Managed Care,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3