In silico prediction of candidate gene targets for the management of African cassava whitefly (Bemisia tabaci, SSA1-SG1), a key vector of viruses causing cassava brown streak disease

Author:

Kaweesi Tadeo123ORCID,Colvin John1,Campbell Lahcen4ORCID,Visendi Paul5,Maslen Gareth4,Alicai Titus3ORCID,Seal Susan1

Affiliation:

1. Natural Resources Institute, University of greenwich, Chatham Maritime, Kent, United Kingdom

2. Rwebitaba Zonal Agricultural Research and Development Institute, National Agricultural Research Organization, Fort Portal, Kabarole, Uganda

3. National Crops Resources Research Institute, National Agricultural Research Organization, Kampala, Uganda

4. Wellcome Genome Campus, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, United Kingdom

5. Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Queensland University of Technology, Brisbane, Queensland, Australia

Abstract

Whiteflies (Bemisia tabaci sensu lato) have a wide host range and are globally important agricultural pests. In Sub-Saharan Africa, they vector viruses that cause two ongoing disease epidemics: cassava brown streak disease and cassava mosaic virus disease. These two diseases threaten food security for more than 800 million people in Sub-Saharan Africa. Efforts are ongoing to identify target genes for the development of novel management options against the whitefly populations that vector these devastating viral diseases affecting cassava production in Sub-Saharan Africa. This study aimed to identify genes that mediate osmoregulation and symbiosis functions within cassava whitefly gut and bacteriocytes and evaluate their potential as key gene targets for novel whitefly control strategies. The gene expression profiles of dissected guts, bacteriocytes and whole bodies were compared by RNAseq analysis to identify genes with significantly enriched expression in the gut and bacteriocytes. Phylogenetic analyses identified three candidate osmoregulation gene targets: two α-glucosidases, SUC 1 and SUC 2 with predicted function in sugar transformations that reduce osmotic pressure in the gut; and a water-specific aquaporin (AQP1) mediating water cycling from the distal to the proximal end of the gut. Expression of the genes in the gut was enriched 23.67-, 26.54- and 22.30-fold, respectively. Genome-wide metabolic reconstruction coupled with constraint-based modeling revealed four genes (argH, lysA, BCAT & dapB) within the bacteriocytes as potential targets for the management of cassava whiteflies. These genes were selected based on their role and essentiality within the different essential amino acid biosynthesis pathways. A demonstration of candidate osmoregulation and symbiosis gene targets in other species of the Bemisia tabaci species complex that are orthologs of the empirically validated osmoregulation genes highlights the latter as promising gene targets for the control of cassava whitefly pests by in planta RNA interference.

Funder

Natural Resources Institute, University of Greenwich from a grant provided by the Bill & Melinda Gates foundation Grant Agreement

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3