Phylomitogenomics elucidates the evolution of symbiosis in Thoracotremata (Decapoda: Cryptochiridae, Pinnotheridae, Varunidae)

Author:

Xu Tao1,Bravo Henrique1,van der Meij Sancia E.T.12

Affiliation:

1. Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands

2. Marine Biodiversity Group, Naturalis Biodiversity Center, Leiden, Netherlands

Abstract

Background Thoracotremata belong to the large group of “true” crabs (infraorder Brachyura), and they exhibit a wide range of physiological and morphological adaptations to living in terrestrial, freshwater and marine habitats. Moreover, the clade comprises various symbiotic taxa (Aphanodactylidae, Cryptochiridae, Pinnotheridae, some Varunidae) that are specialised in living with invertebrate hosts, but the evolutionary history of these symbiotic crabs is still partially unresolved. Methods Here we assembled and characterised the complete mitochondrial genomes (hereafter mitogenomes) of three gall crab species (Cryptochiridae): Kroppcarcinus siderastreicola, Opecarcinus hypostegus and Troglocarcinus corallicola. A phylogenetic tree of the Thoracotremata was reconstructed using 13 protein-coding genes and two ribosomal RNA genes retrieved from three new gall crab mitogenomes and a further 72 available thoracotreme mitogenomes. Furthermore, we applied a comparative analysis to characterise mitochondrial gene order arrangement, and performed a selection analysis to test for selective pressure of the protein-coding genes in symbiotic Cryptochiridae, Pinnotheridae, and Varunidae (Asthenognathus inaequipes and Tritodynamia horvathi). Results The results of the phylogenetic reconstruction confirm the monophyly of Cryptochiridae, which clustered separately from the Pinnotheridae. The latter clustered at the base of the tree with robust branch values. The symbiotic varunids A. inaequipes and T. horvathi clustered together in a clade with free-living Varunidae species, highlighting that symbiosis in the Thoracotremata evolved independently on multiple occasions. Different gene orders were detected in symbionts and free-living species when compared with the ancestral brachyuran gene order. Lastly, the selective pressure analysis detected two positively selected sites in the nad6 gene of Cryptochiridae, but the evidence for positive selection in Pinnotheridae and A. inaequipes and T. horvathi was weak. Adaptive evolution of mitochondrial protein-coding genes is perhaps related to the presumably higher energetic demands of a symbiotic lifestyle.

Funder

TREUB-maatschappij (Society for the Advancement of Research in the Tropics) and Flying Sharks

Academy Ecology Fund Grant from the Royal Netherlands Academy of Arts and Sciences

China Scholarship Council

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3