Bacterial diversity of herbal rhizospheric soils in Ordos desert steppes under different degradation gradients

Author:

Guo Yuefeng1,Zhang Dan1,Qi Wei2

Affiliation:

1. College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, Asia, China

2. Inner Mongolia Autonomous Region Water Conservancy Development Center, Hohot, Inner Mongolia, Asia, China

Abstract

Objectives This study explored the effects of different degradation gradients on bacterial diversity in the rhizospheric soils of herb plants. Methods The alpha diversity, species composition and correlations of bacterial communities in the rhizospheric soils of herb plants were studied using metagenomics 16SrDNA gene high-throughput sequencing. Results The diversity of bacterial communities in the rhizospheric soils of herb plants differed during the degradation of desert steppes. An analysis of bacterial community alpha diversity indices showed the bacterial diversity and species evenness of rhizospheric soils were best in moderately degraded desert steppes. Among all samples, a total of 43 phyla, 133 classes, 261 orders, 421 families, 802 genera and 1,129 species were detected. At the phylum level, the predominant bacterial phyla were: Actinobacteria, Proteobacteria, Acidobacteria, Gemmatimonadetes, Chloroflexi, Planctomycetes and Bacteroidetes. At the genus level, the predominant bacterial genera were: RB41, Sphingomonas, WD2101_soil_group_unclassified, Pseudomonas and Actinomyces. The relative abundance of unknown genera was very large, which deserves further research. At the phylum and genus levels, the species abundance levels under slight and moderate degradation were significantly higher than those under extreme degradation. Correlation network diagrams showed there were many nodes in both slightly deteriorated and moderately deteriorated soils, and the node proportions were large and mostly positively correlated. These results indicate the bacterial communities in rhizospheric soils under slight or moderate deterioration are relatively stable. The rhizospheric soil microbes of desert steppes can form a stable network structure, allowing them to adequately respond to environmental conditions. Conclusions The bacterial communities in the rhizospheric soils of herb plants differ between different degradation gradients. The species number, abundance and diversity of bacterial communities in rhizospheric soils are not directly correlated with degree of degradation. The abundance, species diversity and species abundance of bacterial communities in the rhizospheric soils of moderately degraded desert steppes are the highest and most stable. The soil bacterial diversity is lowest in severely degraded desert steppes.

Funder

The Ordos Science and Technology Cooperation Key Project

The Inner Mongolian Autonomous Region Directly Affiliated Universities Basic Scientific Research Operating Expenses Project

The Autonomous Region Application Technology Research and Development Fund Program

The Natural Science Foundation of Inner Mongolian Autonomous Region

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference39 articles.

1. Influence of soil factors on interaction between Arbuscular Mycorrhizal fungi and plants in Tibet Altiplano pasture;Cai;Journal of Soil and Water Conservation,2004

2. DADA2: high-resolution sample inference from illumina amplicon data;Callahan;Nature Methods,2016

3. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments;Chaudhry;Microbial Ecology,2012

4. The Rhizosphere

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3