Domestic sewage dispersion scenarios as a subsidy to the design of urban sewage systems in the Lower Amazon River, Amapá, Brazil

Author:

Medeiros de Abreu Carlos Henrique1,Perez Araújo Elizandra2,Ferreira Albuquerque Cunha Helenilza3,Teixeira Marcelo4,Cavalcanti da Cunha Alan5

Affiliation:

1. Environmental Engineering School, Amapá State University, Macapá, Amapá, Brazil

2. Graduate Program in Biodiversity and Biotechnology, Federal University of Amapá, Macapá, Amapá, Brazil

3. Environment and Development Department, Federal University of Amapá, Macapá, Amapá, Brazil

4. Faculty of Civil and Environmental Engineering, Federal University of Pará, Tucuruí, Pará, Brazil

5. Civil Engineering Department, Federal University of Amapá, Macapá, Amapá, Brazil

Abstract

The final in natura discharge of urban domestic sewage in rivers in the Amazon is a widespread practice. In addition, there is an evident lack of knowledge about the self-depurative characteristics of the receiving water bodies in these rivers. This problem is a challenge for designing sanitary sewage system (SSS) projects in the region. We aimed to numerically simulate hydrodynamic scenarios to study pollutant dispersion processes in an urban stretch impacted by domestic sewage in the Lower Amazon River (Amapá, Brazil) using a hydrodynamic model calibrated and coupled to a dispersive model (Lagrangian) (SisBaHiA). The following methodological steps were performed: (a) bathymetric and liquid discharge experimental campaigns using acoustic techniques (acoustic doppler current profiler—ADCP); (b) identification of point and diffuse sources of pollution in the Santana Channel (CSA) and North Channel of the Amazon River (NCM) in Macapá; (c) calibration of the hydrodynamic model and simulation of the dispersive process of domestic sewage plumes; (d) simulation of dispersive process scenarios in two seasonal hydrological periods and different tidal phases. The results of the simulations indicated significant spatiotemporal variations in the plumes, suggesting critical restriction of water quality in the dry period. The hotspot water collection supply station for ETA-CAESA was found to be the most threatened site by diffuse and point source loads. The simulated impacts showed that concentration variation worsens seasonally, restricting the multiple uses of water in both seasonal periods, regardless of tide phase. The pollutant plumes near the coastal-urban zone were apparently more inhibited by the influence of currents, and, due to the greater dilution capacity in the center of the channel, by the effect reversing with the approximation to the riverbank. The research hypotheses were supported: (a) the process of self-depuration of pollutants in the NCM has considerable limitations in shallow areas, and (b) SSS design projects in the region of the Amazon estuarine complex require hydrodynamic and strict water quality assessment, especially when their hydrological-seasonal and bathymetric characteristics are significantly unfavorable to dispersive processes. Thus, a hydrodynamic analysis should be the primary criterion in designing any SSS projects in this stretch of the estuarine Amazon region.

Funder

CNPq

TEDPLAN Project (2018) / FUNASA - UNIFAP

Publisher

PeerJ

Reference71 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3