Assessing the ecological risk of heavy metal sediment contamination from Port Everglades Florida USA

Author:

Giarikos Dimitrios G.12,White Laura3,Daniels Andre M.4,Santos Radleigh G.25,Baldauf Paul E.23,Hirons Amy C.23

Affiliation:

1. Chemistry and Physics, Nova Southeastern University, Fort Lauderdale, FL, United States of America

2. SECLER: Study of Environmental Conservation through Leading-Edge Research, Nova Southeastern University, Fort Lauderdale, FL, United States of America

3. Department of Marine and Environmental Sciences, Nova Southeastern Univeristy, Fort Lauderdale, FL, United States of America

4. Wetland and Aquatic Research Center, U.S. Geological Survey, Davie, FL, United States of America

5. Department of Mathematics, Nova Southeastern University, Fort Lauderdale, FL, United States of America

Abstract

Port sediments are often contaminated with metals and organic compounds from anthropogenic sources. Remobilization of sediment during a planned expansion of Port Everglades near Fort Lauderdale, Florida (USA) has the potential to harm adjacent benthic communities, including coral reefs. Twelve sediment cores were collected from four Port Everglades sites and a control site; surface sediment was collected at two nearby coral reef sites. Sediment cores, sampled every 5 cm, were analyzed for 14 heavy metals using inductively coupled plasma-mass spectrometry. Results for all three locations yielded concentration ranges (µg/g): As (0.607–223), Cd (n/d–0.916), Cr (0.155–56.8), Co (0.0238–7.40), Cu (0.004–215), Pb (0.0169–73.8), Mn (1.61–204), Hg (n/d–0.736), Mn (1.61–204), Ni (0.232–29.3), Se (n/d–4.79), Sn (n/d–140), V (0.160–176), and Zn (0.112–603), where n/d = non-detected. The geo-accumulation index shows moderate-to-strong contamination of As and Mo in port sediments, and potential ecological risk indicates moderate-to-significantly high overall metal contamination. All four port sites have sediment core subsamples with As concentrations above both threshold effect level (TEL, 7.24 µg/g) and probable effect level (PEL, 41.6 µg/g), while Mo geometric mean concentrations exceed the background continental crust level (1.5 µg/g) threshold. Control site sediments exceed TEL for As, while the reef sites has low to no overall heavy metal contamination. Results of this study indicate there is a moderate to high overall ecological risk from remobilized sediment due to metal contamination. Due to an imminent dredging at Port Everglades, this could have the potential to harm the threatened adjacent coral communities and surrounding protected habitats.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3