Acute effects of muscle mechanical properties after 2000-m rowing in young male rowers

Author:

Chang Chun-Hao1,Ho Chin-Shan1,Li Fang2,Chen Chao-Yuan13,Yeh Hung-Chih1,Ho Chia-An1

Affiliation:

1. Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, Taiwan

2. School of Physical Education, Central China Normal University, Wuhan City, Hubei Province, China

3. Sport Office, National Taipei University of Business, Taipei City, Taiwan

Abstract

Background The mechanical properties of muscles, such as changes in muscle tone and stiffness, are related to sports performance and injuries. Rowers are at increased risk of muscle fatigue and injury during high-repetition and heavy-load cyclic muscle actions. In view of this, the aim of the present study was to investigate the acute effect on muscle tone and stiffness, as well as bilateral muscle asymmetry, in high school rowers after a 2000-meter rowing ergometer test. Methods Twelve young male rowers (age = 17.1 ± 0.9 years, body weight = 73.5 ± 9.7 kg) were included in the study. The data of muscle tone (frequency) and stiffness of the posterior deltoids (PD), latissimus dorsi (LD), and rectus femoris (RF) (dominant and non-dominant side) before and after a 2000-m rowing ergometer test were collected using a handheld MyotonPRO device. Results After the rowing ergometer test, the muscle tone of dominant side PD, LD, and RF were significantly increased (p < 0.05). On the other hand, the muscle stiffness of the non-dominant side LD and RF, as well as the dominant side PD, LD, and RF were significantly increased after the rowing ergometer test (p < 0.05). The muscle tone and stiffness results showed that the dominant side PD, LD, and RF were all significantly higher than the non-dominant side after the rowing ergometer test (p < 0.05), where bilateral PD and RF exhibits moderate asymmetry (5% < symmetry index < 10%). Conclusions After a high-intensity and high-load 2000-m rowing ergometer test, PD, LD, and RF showed increases in muscle tone and stiffness, as well as changes in the symmetry of bilateral muscle mechanical properties.

Funder

National Science and Technology Council, Taiwan

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3