Ultrastructural analysis of throat dermal tissue and chromatophore components in the threespine stickleback (Gasterosteus aculeatus)

Author:

Anderson Christopher M.1,Fink Thomas1,McKinnon Jeffrey S.1

Affiliation:

1. Department of Biology, East Carolina University, Greenville, NC, United States of America

Abstract

The threespine stickleback (Gasterosteus aculeatus) is an important model for studying the evolution of nuptial coloration, but histological analyses of color are largely lacking. Previous analyses of one nuptial coloration trait, orange-red coloration along the body, have indicated carotenoids are the main pigment producing this color. In addition, recent gene expression studies found variation in the correlates of throat coloration between the sexes and between populations, raising the possibility of variation in the mechanisms underlying superficially similar coloration. We used transmission electron microscopy (TEM) to investigate the histological correlates of color in the throat dermal tissue of threespine stickleback from Western North America, within and between sexes, populations, and ecotypes. Ultrastructural analysis revealed carotenoid-containing erythrophores to be the main chromatophore component associated with orange-red coloration in both males and females across populations. In individuals where some darkening of the throat tissue was present, with no obvious orange-red coloration, erythrophores were not detected. Melanophore presence was more population-specific in expression, including being the only chromatophore component detected in a population of darker fish. We found no dermal chromatophore units within colorless throat tissue. This work confirms the importance of carotenoids and the erythrophore in producing orange-red coloration across sexes, as well as melanin within the melanophore in producing darkened coloration, but does not reveal broad histological differences among populations with similar coloration.

Funder

The National Institute of General Medical Sciences of the National Institutes of Health

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3