TICI: a taxon-independent community index for eDNA-based ecological health assessment

Author:

Wilkinson Shaun P.12,Gault Amy A.1,Welsh Susan A.1,Smith Joshua P.34,David Bruno O.4,Hicks Andy S.56,Fake Daniel R.6,Suren Alastair M.7,Shaffer Megan R.8,Jarman Simon N.2,Bunce Michael2910

Affiliation:

1. Wilderlab NZ Ltd., Wellington, New Zealand

2. School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia

3. School of Science, The University of Waikato, Hamilton, Waikato, New Zealand

4. Waikato Regional Council, Hamilton, Waikato, New Zealand

5. Ministry for the Environment, Wellington, New Zealand

6. Hawke’s Bay Regional Council, Napier, Hawke’s Bay, New Zealand

7. Bay of Plenty Regional Council, Tauranga, Bay of Plenty, New Zealand

8. School of Marine and Environmental Affairs, University of Washington, Seattle, WA, United States of America

9. Department of Conservation, Wellington, New Zealand

10. School of Biomedical Sciences, University of Otago, Dunedin, Otago, New Zealand

Abstract

Global biodiversity is declining at an ever-increasing rate. Yet effective policies to mitigate or reverse these declines require ecosystem condition data that are rarely available. Morphology-based bioassessment methods are difficult to scale, limited in scope, suffer prohibitive costs, require skilled taxonomists, and can be applied inconsistently between practitioners. Environmental DNA (eDNA) metabarcoding offers a powerful, reproducible and scalable solution that can survey across the tree-of-life with relatively low cost and minimal expertise for sample collection. However, there remains a need to condense the complex, multidimensional community information into simple, interpretable metrics of ecological health for environmental management purposes. We developed a riverine taxon-independent community index (TICI) that objectively assigns indicator values to amplicon sequence variants (ASVs), and significantly improves the statistical power and utility of eDNA-based bioassessments. The TICI model training step uses the Chessman iterative learning algorithm to assign health indicator scores to a large number of ASVs that are commonly encountered across a wide geographic range. New sites can then be evaluated for ecological health by averaging the indicator value of the ASVs present at the site. We trained a TICI model on an eDNA dataset from 53 well-studied riverine monitoring sites across New Zealand, each sampled with a high level of biological replication (n = 16). Eight short-amplicon metabarcoding assays were used to generate data from a broad taxonomic range, including bacteria, microeukaryotes, fungi, plants, and animals. Site-specific TICI scores were strongly correlated with historical stream condition scores from macroinvertebrate assessments (macroinvertebrate community index or MCI; R2 = 0.82), and TICI variation between sample replicates was minimal (CV = 0.013). Taken together, this demonstrates the potential for taxon-independent eDNA analysis to provide a reliable, robust and low-cost assessment of ecological health that is accessible to environmental managers, decision makers, and the wider community.

Funder

Callaghan Innovation Career Grant, awarded to Wilderlab NZ Ltd. for Amy A Gault

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3