Identification and validation of hub genes involved in foam cell formation and atherosclerosis development via bioinformatics

Author:

Teng Da12,Chen Hongping3,Jia Wenjuan12,Ren Qingmiao4,Ding Xiaoning1,Zhang Lihui12,Gong Lei1,Wang Hua1,Zhong Lin1,Yang Jun12

Affiliation:

1. Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China

2. Qingdao University, Qingdao, China

3. Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China

4. The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, China

Abstract

Background Foam cells play crucial roles in all phases of atherosclerosis. However, until now, the specific mechanisms by which these foam cells contribute to atherosclerosis remain unclear. We aimed to identify novel foam cell biomarkers and interventional targets for atherosclerosis, characterizing their potential mechanisms in the progression of atherosclerosis. Methods Microarray data of atherosclerosis and foam cells were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expression genes (DEGs) were screened using the “LIMMA” package in R software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Ontology (GO) annotation were both carried out. Hub genes were found in Cytoscape after a protein-protein interaction (PPI) enrichment analysis was carried out. Validation of important genes in the GSE41571 dataset, cellular assays, and tissue samples. Results A total of 407 DEGs in atherosclerosis and 219 DEGs in foam cells were identified, and the DEGs in atherosclerosis were mainly involved in cell proliferation and differentiation. CSF1R and PLAUR were identified as common hub genes and validated in GSE41571. In addition, we also found that the expression of CSF1R and PLAUR gradually increased with the accumulation of lipids and disease progression in cell and tissue experiments. Conclusion CSF1R and PLAUR are key hub genes of foam cells and may play an important role in the biological process of atherosclerosis. These results advance our understanding of the mechanism behind atherosclerosis and potential therapeutic targets for future development.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Shandong Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3