A nonlinear total variation based computed tomography (CT) image reconstruction method using gradient reinforcement

Author:

Ertas Metin

Abstract

Compressed sensing-based reconstruction algorithms have been proven to be more successful than analytical or iterative methods for sparse computed tomography (CT) imaging by narrowing down the solution set thanks to its ability to seek a sparser solution. Total variation (TV), one of the most popular sparsifiers, exploits spatial continuity of features by restricting variation between two neighboring pixels in each direction as using partial derivatives. When the number of projections is much fewer than the one in conventional CT, which results in much less sampling rate than the minimum required one, TV may not provide satisfactory results. In this study, a new regularizer is proposed which seeks for a sparser solution by reinforcing the gradient of TV and empowering the spatial continuity of features. The experiments are done by using both analitical phantom and real human CT images and the results are compared with conventional, four-directional, and directional TV algorithms by using contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and Structural Similarity Index (SSIM) metrics. Both quantitative and visual evaluations show that the proposed method is promising for sparse CT image reconstruction by reducing the background noise while preserving the features and edges.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference26 articles.

1. Directional total variation;Bayram;IEEE Signal Processing Letters,2012

2. Distributed optimization and statistical learning via the alternating direction method of multipliers;Boyd;Foundations and Trends in Machine Learning,2011

3. A non-local algorithm for image denoising;Buades,2005

4. A limited-angle CT reconstruction method based on anisotropic TV minimization;Chen;Physics in Medicine & Biology,2013

5. Image denoising by sparse 3-D transform-domain collaborative filtering;Dabov;IEEE Transactions on Image Processing,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3