Affiliation:
1. 1University of Genova, via Montallegro 1, 16145 Genova, Italy
2. 2U.S. Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Rd., Morgantown, WV 26507, U.S.A.
Abstract
Abstract
Coupling a solid oxide fuel cell (SOFC) with a gas turbine provides a substantial increment in system efficiency compared to the separate technologies, which can potentially introduce economic benefits and favor an early market penetration of fuel cells. Currently, the economic viability of such systems is limited by fuel cell short lifetime due to a progressive performance degradation that leads to cell failure. Mitigating these phenomena would have a significant impact on system economic feasibility. In this study, the lifetime of a standalone, atmospheric SOFC system was compared to a pressurized SOFC gas turbine hybrid and an economic analysis was performed. In both cases, the power production was required to be constant over time, with significantly different results for the two systems in terms of fuel cell operating life, system efficiency, and economic return. In the hybrid system, an extended fuel cell lifetime is achieved while maintaining high system efficiency and improving economic performance. In this work, the optimal power density was determined for the standalone fuel cell in order to have the best economic performance. Nevertheless, the hybrid system showed better economic performance, and it was less affected by the stack cost.
Funder
Enabling Partnership and Technology program of the U.S. Department of Energy, National Energy Technology Laboratory; European project “BioHyPP” in the framework of the European “Horizon 2020.”
Publisher
Global Power and Propulsion Society
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献