THE GENOMIC LANDSCAPE OF THE SWITCH/SUCROSE NON-FERMENTABLE CHROMATIN REMODELING COMPLEX IN ACUTE MYLEOID LEUKEMIA

Author:

Torun Özkan Didem1ORCID,Akın Dilara Fatma2ORCID

Affiliation:

1. OKAN ÜNİVERSİTESİ

2. NİĞDE ÜNİVERSİTESİ, TIP FAKÜLTESİ

Abstract

The SWI/SNF chromatin remodeling complex is involved in the regulation of gene expression required for processes such as cell maintenance and differentiation in hematopoietic stem cells. Abnormalities in the SWI/SNF subunits involved in the homeostasis of hematologic processes contribute to the initiation or progression of hematologic malignancies, but the mechanisms underlying this phenotype are not yet fully understood. The aim of study is to comprehensively identify mutations and expression profiles in the genes forming the SWI/SNF complex using bioinformatics tools, with a focus on understanding the underlying mechanisms. Genomic sequences and expression profiles of an AML cohort (n:872) were obtained from using tools and subsequently analyzed. PolyPhen-2, SIFT, and Mutation Assessor tools were used to estimate the oncogenic/pathogenic effects of mutations identified in 9 genes encoding subunits of the complex ARID1A, ARID1B, SMARCA2, SMARCA4, SMARCE1, SMARCB1, DPF2, PMBR1, and BCL7A in AML pathogenesis. STRING analysis was performed to better understand the functional relationships of the mutant proteins in cellular processes. Furthermore, to the mutation profile, gene expression and survival profiles were also determined. A total of 17 genetic abnormalities were determined in 9 genes, including 9 missense, 6 frameshift mutations, 1 mutation in the splice region, and 1 fusion mutation. In the AML cohort, the expression levels of ARID1A, ARID1B, SMARCA2, and PMBR1 were significantly higher in the patient group compared to the healthy group (p<0.01). Survival analysis based on low and high gene expression profiles showed no significant difference in results. In STRING analysis, our genes were found to have functional relationships with the PHF10 protein, which is involved in cell cycle control. The results suggest that the mutations identified in the ARID1A, ARID1B, SMARCA2, SMARCA4, and PBRM1 may disrupt the function of SWI/SNF chromatin remodeling complexes, possibly inducing/activating different cellular pathways involving different chromatin environments during AML pathogenesis.

Funder

No funding was received.

Publisher

Erciyes Universitesi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3