Fabrication and bioactivity evaluation of curcumin and paclitaxel loaded lipid nanoparticles of pH-sensitive histidinylated cationic amphiphile

Author:

Abstract

Drug resistance, inefficient cellular uptake and the subservient drug release to increase the intracellular drug concentration inside the tumor cells are the key reasons for low therapeutic efficacy of drug-loaded lipid nanoparticles in cancer therapy. Herein, we report on the design, synthesis and bioactivity evaluation of Curcumin & Paclitaxel (PTX) encapsulated endosomal pH-Sensitive lipid nanoparticles of histidinylated cationic amphiphile (16-GH; 2 in 1 system) to overcome these challenges. Findings in fluorescence resonance energy transfer (FRET) assay and in vitro drug release studies showed a controlled pH dependent fusogenic and drug release properties of the lipid nanoparticles of cationic amphiphile 16-GH respectively. Further in vitro studies revealed that Curcumin & PTX encapsulated nanoparticles of lipid 16-GH significantly inhibited proliferation of tumor cells than healthy cells. These lipid nanoparticles were further analyzed for their effect on 5-bromo-2'-deoxyuridine (BrdU) incorporation, Annexin V-FITC and cell cycle arrest (Sub-G1 phase). Further studies also confirmed that nanoparticles of lipid 16-GH containing Curcumin & PTX displayed significantly enhanced the caspase3/9 activity. Remarkably, nanoparticles of lipid 16-GH containing Curcumin & PTX are efficient in inducing apoptosis. The results in our initial mechanistic studies support the notion that the tumor cell selective cytotoxic capability of the lipid nanoparticles of the presently described endosomal pH-sensitive lipid probably instigates from depolarization of mitochondrial membrane potential and subsequent activation of caspases 3 and 9. The distinguishing feature of the currently described endosomal pH-sensitive system is that it not only efficiently delivers highly potent anti-cancer agents (Curcumin & PTX) to tumor cells, but the lipid nanoparticle drug carrier itself also contributes to inhibiting tumor cell growth. In summary, the presently described lipid nanoparticles are expected to simultaneously delivering combination of drugs to various types of tumor models.

Publisher

Asian Medical Press Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3