Combination of polyglycerol sebacate coated with collagen for vascular engineering

Author:

Nazary Abrbekoh Fateme1ORCID,Valizadeh Nasrin2,Hassani Ayla3,Ghale Hakime4,Mahboob Soltan Ali1,Rahbarghazi Reza56ORCID,Khoshfetrat Ali Baradar3,Madipour Mahdi7

Affiliation:

1. Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran

2. Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran

3. Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran

4. Department of Polymer Science and Engineering, University of Bonab, Bonab, Iran

5. Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

6. Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

7. Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

Introduction: Here, we monitored the cytocompatibility of scaffolds consisting of poly (glycerol sebacate) (PGS) coated with collagen (Col) for endothelial cell activity after 72 hours. Methods: Human endothelial cells were allocated into Control, PGS, and PGS+Col groups. Scaffolds were characterized using FTIR and HNMR spectroscopy. Contact angel analysis and SEM were used to study wettability, surface morphology, and cell attachment. Cell survival was assessed using LDH leakage assay. Levels of Tie-1, Tie-2, VE-Cadherin, and VEGFR-2 were measured using western blotting and real-time PCR. Results: FTIR and HNMR analyses revealed the proper blending in PGS+Col group. SEM imaging exhibited a flat surface in the PGS group while thin Col fibers were detected in PGS+Col surface. The addition of Col to the PGS reduced the contract angle values from 97.3˚ to 81.1˚. Compared to PGS substrate alone, in PGS+Col group, cells appropriately attached to the surface. PGS and PGS+Col did not alter the leakage of LDH to the supernatant compared to control cells, showing the cytocopatiblity of PGS-based scaffolds. SOD and NO levels were increased significantly in PGS (p<0.05) and PGS+Col groups (p<0.001), respectively. We found that PGS+Col decreased Tie-1 content in endothelial cells whereas protein levels of Tie-2 and VE-Cadherin and expression of VEGFR-2 remained unchanged compared to PGS and control groups. Conclusion: Simultaneous application of Col and PGS can stimulate normal endothleial cell morphology without the alteration of tyrosine kinases receptors and cadherin.

Publisher

Maad Rayan Publishing Company

Subject

Cardiology and Cardiovascular Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3