QSAR and Molecular Docking Studies on Non-Imidazole-Based Histamine H3 Receptor Antagonists

Author:

Hamzeh-Mivehroud Maryam1ORCID,Khoshravan-Azar Zoha23,Dastmalchi Siavoush12ORCID

Affiliation:

1. Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

2. School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.

3. Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Abstract

Background: In the recent years, histamine H3 receptor (H3R) has been receiving increasing attention in pharmacotherapy of neurological disorders. The aim of the current study was to investigate structural requirements for the prediction of H3 antagonistic activity using quantitative structure-activity relationship (QSAR) and molecular docking techniques. Methods: To this end, genetic algorithm coupled partial least square and stepwise multiple linear regression methods were employed for developing a QSAR model. The obtained QSAR model was stringently assessed using different validation criteria. Results: The generated model indicated that connectivity information and mean absolute charge are two important descriptors for the prediction of H3 antagonistic activity of the studied compounds. To gain insight into the mechanism of interaction between studied molecules and H3R, molecular docking was performed. The most important residues involved in the ligand-receptor interactions were identified. Conclusion: The result of current study can be used for designing of new H3 antagonist and proposing structural modifications to improve H3 inhibitory potency.

Publisher

Maad Rayan Publishing Company

Subject

General Pharmacology, Toxicology and Pharmaceutics,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3