Light-Emitting Diode Laser Therapy for Hyperoxia-Induced Retinal Abnormalities

Author:

Abd Eldaiem Maha Sabry1,Ahmed Salwa Abdelkawi2ORCID,Elsaeid Aziza Abdelmonem1,Hassan Aziza Ahmed3,Ghoneim Dina Fouad3,Ibrahim Ahlam Mohammed1

Affiliation:

1. Physics Department, Faculty of Science, Al Azhar University (Girls), Cairo, Egypt

2. Biophysics and Laser Science Unit, Vision Sciences Department, Research Institute of Ophthalmology, Giza, Egypt

3. Ophthalmic Unit, National Institute of Laser enhanced Science, Cairo University, Cairo, Egypt

Abstract

Introduction: Hyperoxygenation is linked to numerous effects in a variety of organ systems. It can cause tissue damage by generating reactive oxygen species (ROS), increasing oxidative stress, and inducing cell death by apoptosis. The present study aimed to evaluate the effects of low-level laser therapy on the retina in response to acute hyperoxia in animals. Methods: A total of 70 Wistar albino rats were evaluated in the present study: 10 rats were designated as a control group, and the rest were exposed to hyperoxia (O2 , 90%) for 3 days, 1 week, and 2 weeks (20 rats each). Each group was divided into two subgroups (n=10), one of which was designated as hyperoxia only. The other was treated with a 670 nm light-emitting diode laser (2 sessions/one week, ~ 9.0 J/cm2 ) in each eye. The animals were euthanized, and their retinas were dissected for analysis of protein content, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), total antioxidant capacity (TAC), hydrogen peroxide (H2 O2 ), malondialdehyde (MDA), and histological examination. Results: We found that two weeks of hyperoxia induced an increase in retinal protein content (P<0.001), an alteration in the intensities and molecular weights of protein fractions, a significant decrease in the TAC level (P<0.01), and a noticeable increase in H2 O2 and MDA levels (P<0.001). Histological examination revealed fragmentation of the photoreceptors and neovascularization in the outer and inner plexiform layers. Furthermore, the data showed remarkable improvement in the retinal protein contents, oxidative state, and retinal structure after light-emitting diode laser therapy. Conclusion: Light-emitting diode laser therapy was found to be a useful treatment paradigm for reducing hyperoxia-induced retinal damage.

Publisher

Maad Rayan Publishing Company

Subject

Urology,Nephrology,Dermatology,Dentistry (miscellaneous),Orthopedics and Sports Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photobiomodulation Literature Watch February 2022;Photobiomodulation, Photomedicine, and Laser Surgery;2022-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3