Combined Light and Thermal Stimulation of Bone Marrow Stem Cells

Author:

Chailakhyan Ruben1ORCID,Grosheva Alla1,Vorobieva Nataliya2ORCID,Yusupov Vladimir2ORCID,Sviridov Alexander2ORCID

Affiliation:

1. N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia

2. National Research Centre “Kurchatov Institute”, Moscow, Russia

Abstract

Introduction: The purpose of this study is to achieve a significant increase in the proliferative activity of mesenchymal stem cells (MSCs) of the bone marrow (BM) at early passages after laser exposure to a suspension of these cells and to estimate the effect of light and heat components of laser radiation on the proliferation of BM MSCs. Methods: The studies were performed on rats BM MSCs. MSC suspension was placed into the wells and heated by using laser radiation (980 nm wavelength) or a water bath at 70 °C providing similar temperature dynamics. The studies were carried out in 3 comparison groups: (1) control suspension of MSCs, which was not subjected to heating in a water bath or laser exposure; (2) MSC suspension, which was heated for in a water bath; and (3) suspension of MSCs, which was subjected to laser exposure. The exposure times for the 2nd and 3rd experimental groups were 10- 50 seconds. Results: Under optimal parameters of laser action on the suspension of BM MSCs, a six-fold increase in the number of BM MSCs colonies was registered compared to the control. The role of the light and heat components of laser exposure to MSCs was determined by comparable heating of a suspension of BM MSCs in a water bath, at which only a twofold increase in the number of colonies was maximally obtained. Conclusion: The increase in the MSC proliferation activity occurs due to their Thermo-Photobiomodulation. The result obtained is important for practical use in cell transplantation in the treatment of traumatic injuries of bone, cartilage, and tendon tissues when a rapid and multiple increase in the initial number of autologous BM MSCs is required.

Publisher

Maad Rayan Publishing Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3