Effect of the 1064 nm Nd: YAG Laser on the MICs of Antifungals Used in Clinical Practice for the Treatment of Fungal Nail Infections

Author:

Razavyoon Taraneh1ORCID,Hashemi Seyed Jamal1ORCID,Mansouri Parvin2,Daie Ghazvini Roshanak1,Khodavaisy Sadegh1,Bakhshi Heydar1,Ansari Saham3,Rafat Zahra4,Nikkhah Nahid2,Mohajer Bahram1,Razavyoon Shayesteh1,Roostaei Davoud5ORCID

Affiliation:

1. Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

2. Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran

3. Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4. Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran

5. Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran

Abstract

Introduction: The fungal nail infection (onychomycosis) involves 18%-40% of all nail disorders, which, although not fatal, can cause mechanical, aesthetic, occupational, and economic problems. Drug treatments due to prolonged treatment periods, drug interactions, adverse effects, and slow progression may associate with numerous negative outcomes. This study aimed to evaluate the long-pulsed 1064-nm Nd: YAG laser effect on fungal colonies and subsequently possible change in the minimum inhibitory concentrations (MICs) of common antifungals compared with the same non-lasered colonies as a novel way to investigate laser and antifungal interaction. Methods: Sixty onychomycosis samples consisting of saprophyte (n=20), dermatophyte (n=20), and yeast (n=20) duplicate colonies were isolated. A series was treated by a long-pulsed 1064-nm Nd: YAG laser. Afterward, the MIC (CLSI-M38-A2 and CLSI-M27-A3) of two series against common antifungals were compared. Results: After 1064-nm Nd: YAG laser irradiation in all 20 tested saprophytes, the MICs of terbinafine (P value<0.035) were changed, and in all 20 tested dermatophytes, the MICs of voriconazole (P value<0.021) were changed. Also, in all 20 tested yeasts, the MICs of caspofungin (P value<0.037) were changed. Moreover, in saprophytes, dermatophytes, and yeasts, significant changes in the MICs of itraconazole (P value<0.032), terbinafine (P value<0.025), and caspofungin (P value<0.037) were detected. Our result showed the GM MICs of the 1064-nm Nd: YAG laser in all saprophyte, dermatophyte, and yeast groups were lower than in the control group. Conclusion: The present study indicated that the long-pulsed 1064-nm Nd: YAG laser significantly changes the MICs of antifungals in onychomycosis clinical samples.

Publisher

Maad Rayan Publishing Company

Subject

Urology,Nephrology,Dermatology,Dentistry (miscellaneous),Orthopedics and Sports Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3