Quantitative Autofluorescence Imaging of A375 Human Melanoma Cell Samples: A Pilot Study

Author:

Shirkavand Afshan1,Mohajerani Ezeddin2,Farivar Shirin3,Ataie-Fashtami Leila4,Ghazimoradi Mohammad Hossein5

Affiliation:

1. Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran; Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran

2. Professor of Photonics, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.

3. Associate Professor of Genetics, Stem Cells, Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

4. Assistant Professor of Dermatology, Department of Regenerative Medicine, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran

5. Research Assistant of Genetics, Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

Abstract

Introduction: Skin cancer is one of the most common types of malignancy worldwide. Human skin naturally contains several endogenous fluorophores, as potential sources can emit inherent fluorescence, called intrinsic autofluorescence (AF). The melanin endogenous fluorophore in the basal cell layer of the epidermis seems to have a strong autofluorescence signal among other ones in the skin. This pilot study aimed to investigate the feasibility of the detection of autofluorescence signals in the A375 human melanoma cell line in the cell culture stage using the FluoVision optical imaging system. Methods: The human skin melanoma cell line (A375) donated as a gift from Switzerland (University Hospital Basel) was cultured. For the imaging of the A375 human melanoma cell sample in this pilot study, the FluoVision optical imaging device (Tajhiz Afarinan Noori Parseh Co) was applied. The proposed clustering image processing code was developed based on the K-mean segmentation method, using MATLAB software (version 16). Results: The quantification of color pixels in the color bar along with the intensity score of the autofluorescence signal ranged between 0 and 70 was written in the image processing code execution and a threshold higher than 40%, proportional to the ratio of autofluorescent cells. The percentage of the signal of A375 autofluorescent melanoma cells in the 3 studied cell samples was calculated as 3.11%±0.6. Conclusion: This imaging method has the advantage of no need for fluorophore labels over the existing fluorescence imaging methods, and it can be regarded as one of the important choices of label-free imaging for this A375 melanoma cell line containing the intrinsic endogenous fluorophore in cell studies.

Publisher

Maad Rayan Publishing Company

Subject

Urology,Nephrology,Dermatology,Dentistry (miscellaneous),Orthopedics and Sports Medicine,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3