Assessing Radiosensitivity: Effects of Acute Ionizing Radiation on Inflammation and Apoptosis in Macrophage Cell Line (RAW 264.7)

Author:

Bagheri-Hosseinabadi Zahra1,Zafari Jaber2ORCID,Javani Jouni Fatemeh3ORCID,Sadeghi Hanieh4,Abbasifard Mitra5ORCID

Affiliation:

1. Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran

2. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical sciences, Islamic Azad University, Tehran, Iran

3. Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

4. Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

5. Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran

Abstract

Introduction: The responses of biological systems to various types of radiation have multifaceted dimensions. In the field of ionizing radiation, in vitro external gamma radiation therapy has primarily been studied as a model to elucidate the challenges that biological systems face from radiation effects. Exposure of cells/organisms to gamma radiation results in a cascade of ionization events that can cause severe and irreversible biological damage. However, the biological responses and oxidative stress-related mechanisms under acute radiation conditions remain poorly understood in inflammatory systems. The present study aimed to provide a model of the effect of ionizing radiation on macrophages, which play a pivotal role in the mechanisms of inflammation, to assess the impact of radiotherapy as an approach to treating inflammatory diseases. Methods: A macrophage cell line (RAW 264.7) was cultured and exposed to different doses of gamma radiation (4, 6, 8, 10 Gy). Cell viability, apoptosis, cell cycle, migration, nitric oxide (NO) and prostaglandin E2 (PGE2) production, expression of pro-inflammatory and apoptotic genes, and cytokine secretion of macrophages were also evaluated. Results: The results showed that gamma radiation at 4 Gy had a low effect on macrophage characteristics and cytokine secretion patterns. In contrast, higher doses (8 and 10 Gy) increased DNA damage, expression of apoptotic genes, and secretion of NO and PGE2 cytokines. 6 Gy radiation, the maximum radiation dose, showed moderate non-destructive effects and inflammation process modulation. In this study, doses higher than 6 Gy of Gamma radiation caused cell mortality. Conclusion: It appears that 6 Gy of gamma radiation modulates the inflammatory cascade caused by macrophage cells.

Publisher

Maad Rayan Publishing Company

Subject

Urology,Nephrology,Dermatology,Dentistry (miscellaneous),Orthopedics and Sports Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3