A Hybrid of Random Forests and Generalized Path Analysis: A Causal Modeling of Crashes in 52,524 Suburban Areas

Author:

Jahanjoo Fatemeh1ORCID,Sadeghi-Bazargani Homayoun1,Mansournia Mohammad Ali2,Hosseini Seyyed Teymoor3,Asghari-Jafarabadi Mohammad145ORCID

Affiliation:

1. Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2. Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

3. Department of Engineering Traffic and Transportation, Faculty of the Traffic, Tehran University, Tehran, Iran

4. Cabrini Research, Cabrini Health, Malvern, VIC 3144, Australia

5. Biostatistics Unit, School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia

Abstract

Background: Determining suburban area crashes’ risk factors may allow for early and operative safety measures to find the main risk factors and moderating effects of crashes. Therefore, this paper has focused on a causal modeling framework. Study Design: A cross-sectional study. Methods: In this study, 52524 suburban crashes were investigated from 2015 to 2016. The hybrid-random-forest-generalized-path-analysis technique (HRF-gPath) was used to extract the main variables and identify mediators and moderators. Results: This study analyzed 42 explanatory variables using a RF model, and it was found that collision type, distinct, driver misconduct, speed, license, prior cause, plaque description, vehicle maneuver, vehicle type, lighting, passenger presence, seatbelt use, and land use were significant factors. Further analysis using g-Path demonstrated the mediating and predicting roles of collision type, vehicle type, seatbelt use, and driver misconduct. The modified model fitted the data well, with statistical significance ( χ230 =81.29, P<0.001) and high values for comparative-fit-index and Tucker-Lewis-index exceeding 0.9, as well as a low root-mean-square-error-of-approximation of 0.031 (90% confidence interval: 0.030-0.032). Conclusion: The results of our study identified several significant variables, including collision type, vehicle type, seatbelt use, and driver misconduct, which played mediating and predicting roles. These findings provide valuable insights into the complex factors that contribute to collisions via a theoretical framework and can inform efforts to reduce their occurrence in the future.

Publisher

Maad Rayan Publishing Company

Subject

Public Health, Environmental and Occupational Health,Health Policy,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3