Performance evaluation of the combined process of ozonation, biological activated carbon reinforced by bacterial consortium, and ultrafiltration in greywater treatment

Author:

Shahsavani Ebrahim1,Ehrampoush Mohammad Hassan1,Samaei Mohammad Reza2,Abouee Mehrizi Ehsan1,Madadizadeh Farzan3,Abbasi Alireza2,Talebi Parvaneh1,Mohammadpour Amin2,Ebrahimi Ali Asghar1

Affiliation:

1. Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

2. Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences

3. Center for Healthcare Data Modeling, Departments of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Abstract

Background: Background: Because of the growing population and increasing freshwater consumption, treatment and reuse of greywater have been widely considered. The application of a new and environmentally friendly treatment method for synthetic and real greywater (RGW) is of utmost importance. This study aimed to evaluate the efficiency of the combination of ozonation, biological activated carbon, and ultrafiltration (O3 /BAC/UF) in the removal of chemical oxygen demand (COD), turbidity, five-day biochemical oxygen demand (BOD5 ), and linear alkylbenzene sulfonates (LAS) from synthetic greywater and RGW. Methods: Bacillus Subtilis, Acinetobacter radioresistens, Pseudomonas aeruginosa, and Ochrobactrum oryzae were selected from nine pure bacterial species and transferred to granular activated carbon (GAC), then, mineral culture medium was added to the reactor for the growth and establishment of bacterial consortium. The SEM method was employed to ensure the formation of a microbial layer on GAC. Then, the continuous flow of synthetic greywater (for six months) at a low: 6.1, medium: 12.2, and high: 18.3 gCOD/L.d organic loading rates as well as RGW (for two weeks) entered the treatment system. Results: The percentages of COD removal in low, medium, and high organic loads of synthetic greywater and RGW were 85.12%, 79.05%, 85.3%, and 98.65%, respectively. Moreover, the percentages of BOD5 removal were 87%, 82%, 51%, and 92%, respectively. Furthermore, the percentages of turbidity removal were 93.5%, 97%, 96.69%, 73.33%, and the percentages of LAS removal were 91.4%, 88.1%, 84.8%, and 93.7%, respectively. Conclusion: The treatment system has a remarkable ability to remove pollutants from greywater and can be used as a new method of greywater treatment in Iran.

Publisher

Maad Rayan Publishing Company

Subject

Chemical Health and Safety,Public Health, Environmental and Occupational Health,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3