Selecting phototrophic species of native biocrusts in arid and semi-arid regions

Author:

Kashi Zenouzi Leila1ORCID,Kaboli Seyed Hasan1ORCID,Khavazi Kazem2ORCID,Sohrabi Mohammad3ORCID,Khosroshahi Mohammad4ORCID,Karsten Ulf5ORCID

Affiliation:

1. Faculty Desert Studies, Semnan University, Semnan, Iran

2. Department of Soil Biology, Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran

3. Iranian Research Organization for Science and Technology, Tehran, Iran

4. Desert Research Division, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran

5. Institute of Biological Sciences, Applied Ecology & Phycology, University of Rostock, Germany

Abstract

Background: Biological soil crusts (BSCs) that are able to produce sticky extracellular polymeric substances (EPS) play an important role in the formation of soil aggregates, thereby, reducing soil erosion. In this study, experiments were undertaken to identify biocrust species that produce EPS, in order to combat desertification in the Sejzi desert of Iran. Methods: A biocrust distribution map of Sejzi plain was prepared using Landsat 8 OLI images, then, various sampling points were selected. Some physicochemical parameters of samples from lichen-dominated and non-biocrusted areas were measured. The relationship between soil parameters and biocrusts presence was confirmed based on the Pearson’s correlation coefficient and principal component analysis (PCA) method. The type of chemical compounds in the soil content were determined via Fourier transform infrared spectroscopy (FTIR), including polysaccharides. To estimate the degradability of polysaccharides, each soil sample was placed under defined UV-B radiation for 24, 48, and 72 hours at three replications. Results: There was no significant correlation between moss and lichen species with the amount of EPS (%) values and various occurring cyanolichen species in three biocrusted soil samples, which included Collema coccophorum, Collema tenax, Peccania terricola, and Placidium squamulosum. It was speculated that these polysaccharides were produced by the photobiotic partners (microalgae or cyanobacteria) and secreted to the soil. Conclusion: According to the results, the cyanobacteria species of biocrusted samples might have high potential to combat desertification and soil stabilization in Sejzi desert.

Publisher

Maad Rayan Publishing Company

Subject

Chemical Health and Safety,Public Health, Environmental and Occupational Health,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3