An integrated approach to optimization of fermentation conditions for bioethanol production from local leftover Injera waste using central composite design

Author:

Bayu Abreham Bekele1,Akuma Desalegn Abdissa1,Hundie Ketema Beyecha1

Affiliation:

1. Environmental and Process Engineering, School of Chemical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia

Abstract

Background: Bioconversion of lignocelluloses to biofuel from cheap non-edible materials such as local leftover Injera waste for renewable energy is very important and minimizes environmental pollution. Local leftover Injera is an abundant, inexpensive, reusable waste to the environment, containing a sufficient amount of carbohydrate material, which is the best source of fermentable sugars. Methods: In this study, local leftover Injera was treated followed by drying, acidic hydrolysis, and alcoholic fermentation. Besides, the optimization of the fermentation process was done using a central composite box Behnken design. The process included physical and chemical pre-treatment of biomass, which was then followed by acid hydrolysis as a potential step. The scarification and fermentation methods were analyzed to acquire the maximum yield of ethanol. The local leftover Injera waste was pretreated with sulfuric acid and sodium hydroxide solutions. The effect of temperature, substrate concentration, as well pH on bioethanol production was optimized and studied. The optimization process was performed under special condition (temperature=25-40°C, pH=3-5, and substrate concentration=50-200 mg/L). Results: The maximum product of ethanol was achieved at a temperature of 32.718°C, substrate concentration of 125 g/L, and a pH of 4 with a maximum ethanol yield of 42.598%. Conclusion: According to the results, the optimum fermentation conditions for bioethanol production from local leftover Injera waste are the points where the maximum product of ethanol was achieved at a temperature of 32.718°C, substrate concentration of 125 g/L, and a pH of 4.

Publisher

Maad Rayan Publishing Company

Subject

Chemical Health and Safety,Public Health, Environmental and Occupational Health,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3