Macrostachyols A-D, oligostilbenes from Gnetum macrostachyum inhibited in vitro human platelet aggregation

Author:

Surapinit Serm1ORCID,Baisaeng Nuttakorn2ORCID

Affiliation:

1. Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand

2. Department of Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand

Abstract

Introduction: Gnetum macrostachyum is a known Thai medicinal plant as a source of bioactive oligostilbenes, which possess platelet inhibitory activities. The study aimed to evaluate the in vitro human platelet aggregation inhibitory activities of macrostachyols A-D (compounds 1-4) isolated from the roots of G. macrostachyum. Methods: The in vitro human platelet aggregation assay was assayed with a 96-well microtiter plate format. The well-known aggregating agents were used to investigate the possible mechanism of inhibition, including adenosine diphosphate (ADP), arachidonic acid (AA), thromboxane A2 analog (U-46619), collagen, thrombin, and thrombin receptor-activating peptide-6 (TRAP-6). Results: Compound 1 was more potent than ibuprofen (positive control) on the adenosine diphosphate- induced platelet aggregation assay (P < 0.05). Compound 3 was more potent than 1, 2, and 4 (P < 0.05), but all active oligostilbenes were less potent than the positive control (P < 0.05) on the arachidonic acid-induced platelet aggregation assay. The oligostilbenes 1, 2, 3, and 4 also displayed the inhibitory effects on the U-46619-induced platelet aggregation. The tetrameric stilbenes 1 was the only compound that exhibited inhibitory effects on thrombin-induced platelet aggregation without TRAP-6 mediated platelet aggregation. Conclusion: The findings revealed the inhibitory effects of oligostilbenes on human platelet aggregation through a target-specific experimental design. It suggests that oligostilbenes from this plant might be applied as antiplatelet aggregation agents in platelet hyperreactivity- related diseases.

Publisher

Maad Rayan Publishing Company

Subject

Drug Discovery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3