Exploratory data analysis of physicochemical parameters of natural antimicrobial and anticancer peptides: Unraveling the patterns and trends for the rational design of novel peptides

Author:

Saini SandeepORCID,Rathore AayushiORCID,Sharma SheetalORCID,Saini AvneetORCID

Abstract

Introduction: Peptide-based research has attained new avenues in the antibiotics and cancer drug resistance era. The basis of peptide design research lies in playing with or altering physicochemical parameters. Here in this work, we have done exploratory data analysis (EDA) of physicochemical parameters of antimicrobial (AMPs) and anticancer (ACPs) peptides, two promising therapeutics for microbial and cancer drug resistance to deduce patterns and trends. Methods: Briefly, we have captured the natural AMPs and ACPs data from the APD3 database. After cleaning the data manually and by CD-HIT web server, further data analysis has been done using Python-based packages, modlAMP and Pandas. We have extracted the descriptive statistics of 10 physicochemical parameters of AMPs and ACPs to build a comprehensive dataset containing all major parameters. The global analysis of datasets has been done using modlAMP to find the initial patterns in global data. The subsets of AMPs and ACPs were curated based on the length of the peptides and were analyzed by Pandas package to deduce the graphical profile of AMPs and ACPs. Results: EDA of AMPs and ACPs shows selectivity in the length and amino acid compositions. The distribution of physicochemical parameters in defined quartile ranges was observed in the descriptive statistical and graphical analysis. The preferred length range of AMPs and ACPs was found to be 21-30 amino acids, whereas few outliers in each parameter were evident after EDA analysis. Conclusion: The derived patterns from natural AMPs and ACPs can be used for the rational design of novel peptides. The statistical and graphical data distribution findings will help in combining the different parameters for potent design of novel AMPs and ACPs.

Publisher

Maad Rayan Publishing Company

Subject

Pharmaceutical Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3