Protective effects of limb remote ischemic per-conditioning on the heart injury induced by renal ischemic-reperfusion through the interaction of the apelin with the RAS/iNOS pathway

Author:

Janfeshan SaharORCID,Masjedi FatemehORCID,Karimi ZeinabORCID

Abstract

Introduction: Remote ischemic conditioning upregulates endogenous protective pathways in response to ischemia-reperfusion injury. This study tested the hypothesis that limb remote ischemic per-conditioning (RIPerC) exerts cardioprotective effects via the renin-angiotensin system (RAS)/inducible nitric oxide synthase (iNOS)/apelin pathway. Methods: Renal ischemia-reperfusion injury (I/R) was induced by bilateral occlusion of the renal pellicles for 60 minutes, followed by 24 hours of reperfusion; sham-operated rats served as controls. RIPerC was induced by four cycles (5 minutes) of limb ischemia-reperfusion along with bilateral renal ischemia. The functional disturbance was evaluated by renal (BUN and creatinine) and cardiac (troponin I and lactate dehydrogenase) injury biomarkers. Results: Renal I/R injury increased renal and cardiac injury biomarkers that were reduced in the RIPerC group. Histopathological findings of the kidney and heart were also suggestive of amelioration injury-induced changes in the RIPerC group. Assessment of cardiac electrophysiology revealed that RIPerC ameliorated the decline in P wave duration without significantly affecting other cardiac electrophysiological changes. Further, renal I/R injury increased the plasma (322.40±34.01 IU/L), renal (8.27±1.10 mIU/mg of Protein), and cardiac (68.28±10.28 mIU/mg of Protein) angiotensin-converting enzyme (ACE) activities in association with elevations in the plasma and urine nitrite (25.47±2.01 & 16.62±3.05 μmol/L) and nitrate (15.47±1.33 & 5.01±0.96 μmol/L) levels; these changes were reversed by RIPerC. Further, renal ischemia-reperfusion injury significantly (P=0.047) decreased the renal (but not cardiac) apelin mRNA expression, while renal and cardiac ACE2 (P<0.05) and iNOS (P=0.043) mRNA expressions were significantly increased compared to the sham group; these effects were largely reversed by RIPerC. Conclusion: Our results indicated that RIPerC protects the heart against renal ischemia-reperfusion injury, likely via interaction of the apelin with the RAS/iNOS pathway.

Publisher

Maad Rayan Publishing Company

Subject

Pharmaceutical Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3