Development of Floating Tablets of Metformin HCl by Thermoplastic Granulation. Part II: In Vitro Evaluation of the Combined Effect of Acacia Gum/HPMC on Biopharmaceutical Performances

Author:

Djebbar Mohamed1ORCID,Chaffai Nacéra1ORCID,Bouchal Fatiha2

Affiliation:

1. Galenic Pharmacy Laboratory, Pharmacy Department Medicine Faculty, Badji Mokhtar University, P.O. Box 204 Route Zaafrania, Annaba, Algeria.

2. Pharmaceutical Laboratory, Department of Engineering Process, Faculty of Technology, Abderrahmane-Mira University, Bejaia, Algeria.

Abstract

Purpose: The aim of this study was to evaluate the combined effect, acacia gum(AG)/ hydroxypropylmethylcellulose (HPMC), on biopharmaceutical performances of floating tablets of metformin hydrochloride (MTH) prepared by thermoplastic granulation using stearic acid. Methods: We have prepared the matrixes using AG/HPMC as a polymer combination. This combination of polymers which represents 15% of the total mass of tablet was used at various ratios 3:1, 1:1, 1:3, with two viscosity grade of HPMC (k15M and k100M). The developed matrixes have been evaluated for their pharmacotechnical and biopharmaceutical properties. Results: In addition to the satisfactory physical characteristics of matrixes, it was revealed that the Fc3 and Fc6 formulations with AG/HPMC k15M and AG/HPMC k100M respectively, at ratio, 1:3 were considered the most performance. These formulations have shown swelling, fast flotation, 360 and 480 seconds respectively, and remained floating on the surface of the medium for more than 24 hours, with the matrix integrity, while F1, containing only AG, did not show swelling and did not float. In addition, extended in vitro release (>8 hours) with decreased dissolved MTH rates was demonstrated for Fc3 and Fc6 matrixes, 95% and 91% respectively, compared to F1 where MTH dissolution was complete after 2 hours. The drug release from the highest-performance matrixes (Fc3 and Fc6) was found to follow Korsmeyer-Peppas’s model. The mechanism drug release was controlled by diffusion and erosion. Conclusion: The AG/HPMC combination was suitable as a polymer matrix to improve the in vitro biopharmaceutical properties of MTH compared to AG.

Publisher

Maad Rayan Publishing Company

Subject

General Pharmacology, Toxicology and Pharmaceutics,Pharmaceutical Science

Reference26 articles.

1. Effervescent floating tablets of metformin HCl developed by melt granulation. Part I: Effect of hydrophilic polymer on biopharmaceutical properties

2. Formulation and design of sustained release matrix tablets of metformin hydrochloride: Influence of hypromellose and polyacrylate polymers

3. Gastric floating matrix tablets of metformin HCl: design and optimization using combination of polymers;Bahri-Najafi R;Journal of Reports in Pharmaceutical Sciences,2016

4. Design and in-vitro evaluation of sustained release floating tablets of metformin HCl based on effervescence and swelling;Senjoti FG;Iran J Pharm Res,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3