Designing multi-epitope based peptide vaccine candidates against SARS-CoV-2 using immunoinformatics approach

Author:

Ysrafil Ysrafil1ORCID,Sapiun Zulfiayu23ORCID,Astuti Indwiani4ORCID,Anasiru Mohammad Anas5,Slamet Nangsih Sulastri2ORCID,Hartati Hartati2ORCID,Husain Fadli2,Damiti Sukmawati Ahmad6ORCID

Affiliation:

1. Faculty of Medicine, Universitas Palangka Raya, Palangka Raya 73111, Indonesia

2. Department of Pharmacy, Health Polytechnic of Gorontalo, Gorontalo 96135, Indonesia

3. Department of Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia

4. Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

5. Department of Nutrition, Health Polytechnic of Gorontalo, Gorontalo 96135, Indonesia

6. Department of Midwifery, Health Polytechnic of Palangka Raya, Palangka Raya 73111, Indonesia

Abstract

Introduction: The current incidence of the novel coronavirus disease has shown only small reductions of cases and has become a major public health challenge. Development of effective vaccines against the virus is still being encouraged such as multi-epitope vaccines designed from the components of SARS-CoV-2 including its spike, nucleocapsid and ORF1a proteins. Since the addition of adjuvants including HABA protein and L7/L12 ribosomal are considered helpful to increase the effectiveness of the designed vaccine, we proposed to design multiepitope vaccines by two different adjuvants. Methods: We used the IEDB server to predict BCL and TCL epitopes that were characterized using online tools including VaxiJen, AllPred and IL-10 Prediction. The selected epitopes were further constructed into multiepitope vaccines. We also added two different adjuvants to the vaccine components in order to increase the effectiveness of the vaccines. The 3D-structured vaccines were built using trRosetta. They were further docked with different Toll-like-receptors (TLR 3, 4 and 8) and the entry receptor of SARS-CoV-2, ACE2 using ClusPro, PatchDock and refined by FireDock. All structures were visualized by USCF Chimera and PyMOL. Results: In this study, we succeeded in designing two different candidate vaccines by the addition of HABA protein and L7/L12 ribosomal as adjuvants. The two vaccines were almost equally good in terms of their physicochemical properties and characteristics. Likewise, their strong interactions with TLR3 4, 8 and ACE2 show the lowest energy level of both was estimated at more than -1,000. Interactions of vaccines with ACE2 and TLRs are essential for activation of immune responses and production of antibodies. Conclusion: The two designed and constructed multiepitope vaccine have good characteristics and may have the potential to activate humoral and cellular immune responses against SARS-CoV-2. Further research is worth considering to confirm the findings of this study.

Publisher

Maad Rayan Publishing Company

Subject

Pharmaceutical Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3