Synthesis, characterization, and evaluation of pH-sensitive doxorubicin-loaded functionalized graphene oxide in osteosarcoma cells

Author:

Alemi Forough12ORCID,Maleki Masomeh2,Mir Mostafa3,Ebrahimi-Kalan Abbas4,Zarei Mojtaba56,Yousefi Bahman16ORCID,Rashtchizadeh Nadereh17ORCID

Affiliation:

1. Student Research Committee, Tabriz University of medical sciences, Tabriz, Iran

2. Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

3. Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran

4. Department of Neurosciences and cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

5. Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

6. Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

7. Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

Introduction: Doxorubicin (DOX) is one of the most common drugs in cancer treatment. However, its partial solubility along with the high incidence of side effects remains a challenge to tackle. To address these issues, we designed a formulation based on graphene oxide (GO) and used it as an anticancer drug delivery system. Methods: The physical and chemical properties of the formulation were studied using FTIR, SEM, EDX, Mapping, and XRD. Release studies in the in vitro condition were used to evaluate the pH sensitivity of drug release from nanocarriers. Other in vitro studies, including uptake assay, MTT, and apoptosis assay were carried out on the osteosarcoma (cell line. Results: In vitro release studies confirmed that the synthesized formulation provides a better payload release profile in acidic conditions, which is usually the case in the tumor site. On the OS cell line, the cytotoxicity of the DOX-loaded nanocarrier (IC50=0.293 μg/mL) and early apoptosis rate (33.80 % ) were higher in comparison to free DOX (IC50=0.472 μg/mL, and early apoptosis rate= 8.31 % ) after 48 hours. Conclusion: In summary, our results suggest a DOX-loaded graphene oxide carrier as a potential platform for targeting cancer cells.

Publisher

Maad Rayan Publishing Company

Subject

Pharmaceutical Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3