Chemical modification of MTA and CEM cement to decrease setting time and improve bioactivity properties by adding alkaline salts

Author:

Jamali Zavare Faeze12ORCID,Nojehdehian Hanieh23ORCID,Moezizadeh Maryam4,Daneshpooya Mehdi5

Affiliation:

1. Department of Operative Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2. Irainin Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3. Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4. Department of Operative Dentistry, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran

5. Department of Restorative Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

Background . Mineral trioxide aggregate (MTA) and Calcium-enriched Mixture (CEM) cement are used for pulp capping since they induce the formation of a dentinal bridge. Long setting time is a shortcoming of these types of cement. This study aimed to assess the effect of the incorporation of some alkaline salts to MTA and CEM cement on their setting time, ion release profile, pH, and surface morphology. Methods. In this in vitro experimental study, 5% calcium chloride (CaCl2), calcium oxide (CaO), sodium fluoride (NaF), and calcium nitrate [Ca(NO3)2] were separately added to MTA and CEM cement. The primary and final setting times of the cements were measured using a Gillmore needle apparatus. The samples were immersed in simulated body fluid (SBF) for one, seven, and 14 days and subjected to x-ray diffraction (XRD) and scanning electron microscopy (SEM) for phase identification and surface morphology assessment. The change in the pH of solutions was studied, and the calcium ion release profile was determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). The data were analyzed with ANOVA, followed by post hoc tests. Results. CaCl2 and CaO decreased the setting time of MTA, and Ca(NO3)2 decreased the setting time of CEM cement. The incorporation of the salts increased the pH and calcium ion release from both cements, and hydroxyapatite deposits were noted to cover the surface of the samples (observed by SEM and confirmed by EDXA). Conclusion. The incorporation of CaCl2 and CaO into MTA and Ca(NO3)2 into CEM cement decreased their setting time and increased their pH and calcium ion release.

Publisher

Maad Rayan Publishing Company

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3