Photocatalytic removal of naphthalene (C10H8 ) from aqueous environments using sulfur and nitrogen doped titanium dioxide (TiO2 -N-S) coated on glass microbullets in presence of sunlight

Author:

Jafari Abbas1ORCID,Sadeghi Mehrban12ORCID,Tirgir Farhang13ORCID,Barghaei Mehdi4ORCID

Affiliation:

1. PhD Candidate in Environmental Engineering, Faculty of Natural Resources and Environment, Islamic Azad University, Tehran Science and Research Branch, Tehran, Iran

2. Professor of Environmental Health Engineering, Faculty of Public Health, Shahrekord University of Medical Sciences, Shahrekord, Iran

3. Assistant Professor, Department of Chemistry, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

4. Professor of Environmental Engineering, Department of Chemistry and Environment, Technical and Engineering Faculty, Sharif University of Technology, Tehran, Iran

Abstract

Background and aims: Due to their toxicity and carcinogenic effects, polycyclic aromatic hydrocarbons (PAHs) such as naphthalene (C10H8 ) are regarded as hazardous compounds for both humans and the environment, and it is essential to remove these contaminants from the environment. The present study aimed to remove naphthalene from a synthetic aqueous environment using sulfur and nitrogen doped titanium dioxide (TiO2 -N-S) nanoparticles (NPs) immobilized on glass microbullets under sunlight. Methods: In this experimental study, TiO2 -N-S NPs were synthesized using sol-gel process. The structure of NPs was investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray (EDX), and differential reflectance spectroscopy (DRS). In addition, using statistical analyses, the effects of parameters such as the initial concentration of naphthalene, pH, contact time, and the optimal conditions on naphthalene removal were investigated. Results: XRD patterns and SEM images of the samples confirmed the size of synthesized particles in nanometer. The EDX and DRS spectra analysis showed the presence of two elements (sulfur and nitrogen) and the optical photocatalytic activity in the visible region, respectively. The maximum level of naphthalene removal in the presence of sunlight was obtained to be about 93.55% using a concentration of 0.25 g of thiourea immobilized on glass microbullets at pH=5 and contact time of 90 minutes. Conclusion: The rate of naphthalene removal using the immobilized TiO2 -N-S on glass microbullets was 93.55% in optimal conditions. Therefore, this method has an effective potential for naphthalene removal, and can be used to remove naphthalene from industrial wastewater.

Publisher

Maad Rayan Publishing Company

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3