Evaluation of lentiviral vector-based green fluorescent protein expression in human gastric cancer cell line

Author:

Saedi-Marghmaleki Mojtaba1ORCID,Moradi Mohammad-Taghi2,Ghasemi-Dehkordi Payam1,Hashemi Leyla1,Karimi Ali2ORCID

Affiliation:

1. Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran

2. Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran

Abstract

Background and aims : Human immunodeficiency virus type 1 (HIV-1) based-lentivirus vector is one of the most promising viral vectors for gene delivery in different cell lines including gastric cell lines. Therefore, the aim of this study was to produce a lentivirus vector for transduction and expression of green fluorescent protein (GFP) in human gastric cancer cell line, AGS. Materials and Methods: In this piece of work, Escherichia coli HB101 was transformed with plasmids psPAX2, pTD, and pMD2.G, following the purification of which their DNA was extracted along with their quantity and quality evaluated to be used in the next experiments. Subsequently, to produce the vector, the packaging cells were transfected with the plasmids and the vector containing supernatant was collected and purified using ultracentrifuge. ELISA was used to confirm the construction of the vector. Fluorescent microscopy and flow cytometry were used to check the expression of GFP in the cell line and to calculate the percentage of GFP expression, respectively. Results: In this study, the results of ELISA confirmed the construction of the plasmid used in this study. AGS cells were infected with viruses produced to detect the viral activity and GFP expression was evaluated by fluorescence microscopy and flow cytometry after 72 hours. Based on the results of flow cytometry, GFP was expressed in over 90% of transduced AGS cells. Conclusion: The results of this study showed that lentiviral vector is a highly efficient vector for expression of GFP gene in AGS cell line.

Publisher

Maad Rayan Publishing Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3