Affiliation:
1. Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran.
Abstract
Background: Letrozole is a non-steroidal drug utilized as a treatment of hormone-sensitive breast cancer. It has been shown that letrozole has harmful side effects. Therefore, it seems necessary to design a letrozole drug sensor. In this work, we scrutinized the sensing properties of the B30N30, AlB29N30, and GaB29N30 nanoclusters toward the letrozole drug in various adsorption sites. Methods: Investigations were done using the density functional theory (DFT) calculation with the B3PW91/6-311G(d, p) level of theory. The time-dependent density functional theory (TD-DFT) calculations were used to investigate Ultraviolet-visible (UV-vis) spectrums with the same level of theory. Results: The adsorption energy of B30N30, AlB29N30, and GaB29N30 in the most stable complexes were calculated at -16.81, -34.62, and -27.41 kcal mol-1, respectively. The results obtained from the study of electronic properties showed a high sensitivity for the detection of letrozole in B30N30 compared to AlB29N30 and GaB29N30. The calculated recovery time for the B30N30 is 0.13 × 10-5 s, which indicates a very short recovery time. The UV-vis spectrums showed that the letrozole/B30N30 exhibits shift toward the higher wavelengths (red shift). Conclusion: Therefore, these results showed that the B30N30 is a good candidate for identifying letrozole. Further, B30N30 would be more effective than AlB29N30 and GaB29N30 due to the simple synthesis.
Publisher
Maad Rayan Publishing Company
Subject
General Pharmacology, Toxicology and Pharmaceutics,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献