Sensing of Letrozole Drug by Pure and Doped Boron Nitride Nanoclusters: Density Functional Theory Calculation

Author:

Behmanesh Afsoon1,Salimi Farshid1ORCID,Ebrahimzadeh-Rajaei Gholamreza1

Affiliation:

1. Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran.

Abstract

Background: Letrozole is a non-steroidal drug utilized as a treatment of hormone-sensitive breast cancer. It has been shown that letrozole has harmful side effects. Therefore, it seems necessary to design a letrozole drug sensor. In this work, we scrutinized the sensing properties of the B30N30, AlB29N30, and GaB29N30 nanoclusters toward the letrozole drug in various adsorption sites. Methods: Investigations were done using the density functional theory (DFT) calculation with the B3PW91/6-311G(d, p) level of theory. The time-dependent density functional theory (TD-DFT) calculations were used to investigate Ultraviolet-visible (UV-vis) spectrums with the same level of theory. Results: The adsorption energy of B30N30, AlB29N30, and GaB29N30 in the most stable complexes were calculated at -16.81, -34.62, and -27.41 kcal mol-1, respectively. The results obtained from the study of electronic properties showed a high sensitivity for the detection of letrozole in B30N30 compared to AlB29N30 and GaB29N30. The calculated recovery time for the B30N30 is 0.13 × 10-5 s, which indicates a very short recovery time. The UV-vis spectrums showed that the letrozole/B30N30 exhibits shift toward the higher wavelengths (red shift). Conclusion: Therefore, these results showed that the B30N30 is a good candidate for identifying letrozole. Further, B30N30 would be more effective than AlB29N30 and GaB29N30 due to the simple synthesis.

Publisher

Maad Rayan Publishing Company

Subject

General Pharmacology, Toxicology and Pharmaceutics,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3